TY - JOUR
T1 - Screening for potential co-products in a Miscanthus sinensis mapping family by liquid chromatography with mass spectrometry detection
AU - Parveen, Ifat
AU - Wilson, Thomas
AU - Threadgill, Michael D.
AU - Luyten, Jacob
AU - Roberts, Ruth Elen
AU - Robson, Paul Russell
AU - Hauck, Barbara Dorothea
AU - Donnison, Iain Simon
AU - Winters, Anne Louise
N1 - Funding Information:
Work reported in this manuscript was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant on Energy Grasses & Biorefining (BB/J0042/1). We gratefully acknowledge support for BEACON from the European Regional Development Fund through the Welsh European Funding Office, part of the Welsh Assembly. We are also grateful to Sue Youell, Dr. Charlotte Hayes and Jo Spikes for useful discussions.
PY - 2014/9/1
Y1 - 2014/9/1
N2 - Society is demanding more green chemicals from sustainable sources. Miscanthus is a potential source of platform chemicals and bioethanol through fermentation. Miscanthus sinensis (M. sinensis) has been found to contain particularly high levels of soluble phenols (hydroxycinnamates and flavonoids) which may have application in the nutraceutical, cosmetic and pharmaceutical industries. Here, we describe the first study on the identification and quantification of phenols from the leaf tissue of a bi-parental M. sinensis mapping family. Parents and progeny showed complex profiles of phenols with highly related structures which complicated characterisation of individual phenotypes. Separation of semi-purified extracts by reverse-phase liquid chromatography, coupled with detection by diode array and ESI-MS/MS, enabled distinction of different profiles of phenols. Ten hydroxycinnamates (O-cinnamoylquinic acids) and several flavones (one mono-O-glycosyl flavone, eight mono-C-glycosyl flavones, two di-C-glycosyl flavones, five O-glycosyl-C-glycosyl flavones and nine 2″-O-glycosyl-C-glycosyl flavones) were identified and quantified in leaf tissue of two hundred progeny and maternal and paternal plants during the seedling stage. Progeny exhibiting high, moderate and low amounts of hydroxycinnamates and flavonoids and both parents were selected and screened at seven months’ growth to determine the abundance of these phenols at their highest biomass and compared with seedlings. Concentrations of phenols generally decreased as leaves matured. Several flavone-glycosides were identified. This technique can be used for rapid screening of plants in a mapping family to identify genotypes with high phenol content to add value in the biorefinery chain. This comparative study provides information on the content of potentially valuable compounds from readily renewable resources and possible biomarkers for identification in breeding programmes.
AB - Society is demanding more green chemicals from sustainable sources. Miscanthus is a potential source of platform chemicals and bioethanol through fermentation. Miscanthus sinensis (M. sinensis) has been found to contain particularly high levels of soluble phenols (hydroxycinnamates and flavonoids) which may have application in the nutraceutical, cosmetic and pharmaceutical industries. Here, we describe the first study on the identification and quantification of phenols from the leaf tissue of a bi-parental M. sinensis mapping family. Parents and progeny showed complex profiles of phenols with highly related structures which complicated characterisation of individual phenotypes. Separation of semi-purified extracts by reverse-phase liquid chromatography, coupled with detection by diode array and ESI-MS/MS, enabled distinction of different profiles of phenols. Ten hydroxycinnamates (O-cinnamoylquinic acids) and several flavones (one mono-O-glycosyl flavone, eight mono-C-glycosyl flavones, two di-C-glycosyl flavones, five O-glycosyl-C-glycosyl flavones and nine 2″-O-glycosyl-C-glycosyl flavones) were identified and quantified in leaf tissue of two hundred progeny and maternal and paternal plants during the seedling stage. Progeny exhibiting high, moderate and low amounts of hydroxycinnamates and flavonoids and both parents were selected and screened at seven months’ growth to determine the abundance of these phenols at their highest biomass and compared with seedlings. Concentrations of phenols generally decreased as leaves matured. Several flavone-glycosides were identified. This technique can be used for rapid screening of plants in a mapping family to identify genotypes with high phenol content to add value in the biorefinery chain. This comparative study provides information on the content of potentially valuable compounds from readily renewable resources and possible biomarkers for identification in breeding programmes.
KW - Miscanthus sinensis
KW - mapping family
KW - hydroxycinnamates
KW - flavonoids
KW - LC-DAD-ESI-MSn
KW - green chemicals
KW - Green chemicals
KW - Flavonoids
KW - Mapping family
KW - Hydroxycinnamates
KW - Poaceae/chemistry
KW - Luteolin/analysis
KW - Glycosides/analysis
KW - Phenols/analysis
KW - Tandem Mass Spectrometry
KW - Spectrometry, Mass, Electrospray Ionization
KW - Plant Leaves/chemistry
KW - Chromatography, Liquid
UR - http://hdl.handle.net/2160/34544
UR - http://www.scopus.com/inward/record.url?scp=84905449004&partnerID=8YFLogxK
U2 - 10.1016/j.phytochem.2014.05.003
DO - 10.1016/j.phytochem.2014.05.003
M3 - Article
C2 - 24894362
SN - 0031-9422
VL - 105
SP - 186
EP - 196
JO - Phytochemistry
JF - Phytochemistry
ER -