Prosiectau fesul blwyddyn
Crynodeb
In this work, a new method for classification is proposed consisting of a combination of feature selection, normalization, fuzzy C means clustering algorithm and C4.5 decision tree algorithm. The aim of this method is to improve the performance of the classifier by using selected features. The fuzzy C means clustering method is used to partition the training instances into clusters. On each cluster, we build a decision tree using C4.5 algorithm. Experiments on the KDD CUP 99 data set shows that our proposed method in detecting intrusion achieves better performance while reducing the relevant features by more than 80%.
Iaith wreiddiol | Saesneg |
---|---|
Teitl | Cyberspace Safety and Security |
Is-deitl | Proceedings 5th International Symposium, CSS 2013, Zhangjiajie, China, November 13-15, 2013 |
Golygyddion | Guojun Wang |
Cyhoeddwr | Springer Nature |
Tudalennau | 299-307 |
Cyfrol | 8300 |
ISBN (Electronig) | 978-3-319-03584-0 |
ISBN (Argraffiad) | 978-3-319-03583-3, 3319035835 |
Statws | Cyhoeddwyd - 11 Tach 2013 |
Cyfres gyhoeddiadau
Enw | Lecture Notes in Computer Science / Security and Cryptology |
---|---|
Cyhoeddwr | Springer |
Ôl bys
Gweld gwybodaeth am bynciau ymchwil 'Selecting Features for Anomaly Intrusion Detection: A Novel Method using Fuzzy C Means and Decision Tree Classification'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.Prosiectau
- 1 Wedi Gorffen
-
Self-heating architectures against malware propagation
Scully, P. M. D. (Prif Ymchwilydd)
01 Hyd 2011 → 30 Medi 2014
Prosiect: Ymchwil a ariannwyd yn allanol