Self-organised direction aware data partitioning algorithm

Xiaowei Gu, Plamen Parvanov Angelov, Dmitry Kangin, Jose Principe

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

27 Dyfyniadau (Scopus)
27 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

In this paper, a novel fully data-driven algorithm, named Self-Organised Direction Aware (SODA) data partitioning and forming data clouds is proposed. The proposed SODA algorithm employs an extra cosine similarity-based directional component to work together with a traditional distance metric, thus, takes the advantages of both the spatial and angular divergences. Using the nonparametric Empirical Data Analytics (EDA) operators, the proposed algorithm automatically identifies the main modes of the data pattern from the empirically observed data samples and uses them as focal points to form data clouds. A streaming data processing extension of the SODA algorithm is also proposed. This extension of the SODA algorithm is able to self-adjust the data clouds structure and parameters to follow the possibly changing data patterns and processes. Numerical examples provided as a proof of the concept illustrate the proposed algorithm as an autonomous algorithm and demonstrate its high clustering performance and computational efficiency.

Iaith wreiddiolSaesneg
Tudalennau (o-i)80-95
Nifer y tudalennau16
CyfnodolynInformation Sciences
Cyfrol423
Dyddiad ar-lein cynnar19 Medi 2017
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Ion 2018
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Self-organised direction aware data partitioning algorithm'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn