Prosiectau fesul blwyddyn
Crynodeb
We study uncertainty relations for pairs of conjugate variables like number and angle, of which one takes integer values and the other takes values on the unit circle. The translation symmetry of the problem in either variable implies that measurement uncertainty and preparation uncertainty coincide quantitatively, and the bounds depend only on the choice of two metrics used to quantify the difference of number and angle outputs, respectively. For each type of observable, we discuss two natural choices of metric and discuss the resulting optimal bounds with both numerical and analytical methods. We also develop some simple and explicit (albeit not sharp) lower bounds, using an apparently new method for obtaining certified lower bounds to ground state problems.
Iaith wreiddiol | Saesneg |
---|---|
Rhif yr erthygl | 042102 |
Cyfnodolyn | Journal of Mathematical Physics |
Cyfrol | 59 |
Rhif cyhoeddi | 4 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 05 Ebr 2018 |
Ôl bys
Gweld gwybodaeth am bynciau ymchwil 'Sharp uncertainty relations for number and angle'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.Prosiectau
- 1 Wedi Gorffen
-
Control characterisation of noisy quantum devices
Burgarth, D. (Prif Ymchwilydd)
Engineering & Physical Sciences Research Council
01 Meh 2015 → 30 Medi 2016
Prosiect: Ymchwil a ariannwyd yn allanol