Soft subspace clustering for cancer microarray data analysis: A survey

Natthakan Iam-On*, Tossapon Boongoen

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddPennod

Crynodeb

A need has long been identified for a more effective methodology to understand, prevent, and cure cancer. Microarray technology provides a basis of achieving this goal, with cluster analysis of gene expression data leading to the discrimination of patients, identification of possible tumor subtypes, and individualized treatment. Recently, soft subspace clustering was introduced as an accurate alternative to conventional techniques. This practice has proven effective for high dimensional data, especially for microarray gene expressions. In this review, the basis of weighted dimensional space and different approaches to soft subspace clustering are described. Since most of the models are parameterized, the application of consensus clustering has been identified as a new research direction that is capable of turning the difficulty with parameter selection to an advantage of increasing diversity within an ensemble.

Iaith wreiddiolSaesneg
TeitlGlobal Trends in Intelligent Computing Research and Development
GolygyddionB. K. Tripathy, D. P. Acharjya
CyhoeddwrIGI Global Publishing
Tudalennau131-145
Nifer y tudalennau15
ISBN (Electronig)9781466649378
ISBN (Argraffiad)1466649364, 9781466649361
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 31 Rhag 2013
Cyhoeddwyd yn allanolIe

Cyfres gyhoeddiadau

EnwAdvances in Computational Intelligence and Robotics

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Soft subspace clustering for cancer microarray data analysis: A survey'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn