Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network

Haokui Zhang, Ying Li, Yuzhu Zhang, Qiang Shen

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

257 Dyfyniadau (Scopus)
846 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

Hyperspectral image (HSI) classification is a hot topic in the remote sensing community. This paper proposes a new framework of spectral-spatial feature extraction for HSI classification, in which for the first time the concept of deep learning is introduced. Specifically, the model of autoencoder is exploited in our framework to extract various kinds of features. First we verify the eligibility of
autoencoder by following classical spectral information based classification and use autoencoders with different depth to classify hyperspectral image. Further in the proposed framework, we combine PCA on spectral dimension and autoencoder on the other two spatial dimensions to extract spectral-spatial
information for classification. The experimental results show that this framework achieves the highest classification accuracy among all methods, and outperforms classical classifiers such as SVM and PCA-based SVM
Iaith wreiddiolSaesneg
Tudalennau (o-i)438-447
CyfnodolynRemote Sensing Letters
Cyfrol8
Rhif cyhoeddi5
Dyddiad ar-lein cynnar18 Ion 2017
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 04 Mai 2017

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn