Stability of a helicoidal surface inside a cylinder with pinned diameters

Robert J. Whittaker*, Simon Cox

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

1 Dyfyniadau(SciVal)
116 Wedi eu Llwytho i Lawr (Pure)


A mathematical analysis is presented of the stability of a soap film with uniform surface tension when stretched between two diameters on the inside of a circular cylinder. The stability boundary is found as a critical twist angle. between the two diameters, as a function of the aspect ratio l of the cylinder. Numerical and asymptotic results agree well with previous numerical simulations and experiments by Cox and Jones (J. Engr. Math., 86 (2014), 1-7). Their hypothesis that the stability boundary for the multiple-vane case is identical to the single film case is confirmed. It is also shown that two distinct instability mechanisms operate. For moderate and small theta/l, the instability is driven by the decrease in area caused by the film moving to an off-diameter position. But for larger theta/l (more twisted films), the decrease in area is dominated by an internal rearrangement of the surface. The latter mechanism is more relevant to Plateau borders in foams, and our results indicate that straight Plateau borders should be stable at any length provided the total twist is less than pi/root 2.  Document embargo until 29/01/2016

Iaith wreiddiolSaesneg
Tudalennau (o-i)23-52
Nifer y tudalennau30
CyfnodolynQuarterly Journal of Mechanics and Applied Mathematics
Rhif cyhoeddi1
Dyddiad ar-lein cynnar29 Ion 2015
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - Chwef 2015

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Stability of a helicoidal surface inside a cylinder with pinned diameters'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn