TY - JOUR
T1 - Survey of transcripts expressed by the invasive juvenile stage of the liver fluke Fasciola hepatica
AU - Cancela, Martín
AU - Ruétalo, Natalia
AU - Dell'Oca, Nicolás
AU - da Silva, Edileuza
AU - Smircich, Pablo
AU - Rinaldi, Gabriel
AU - Roche, Leda
AU - Carmona, Carlos
AU - Alvarez-Valín, Fernando
AU - Zaha, Arnaldo
AU - Tort, José F.
N1 - Funding Information:
This work was supported by Fundación Manuel Perez, Uruguay, Proy. Binacio-nal DICYT-CNPq, CSIC-Udelar, Pedeciba and INIA-FTPA-252. M.C. and E.S. are recipients of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) fellowships.
PY - 2010/4/7
Y1 - 2010/4/7
N2 - Background: The common liver fluke Fasciola hepatica is the agent of a zoonosis with significant economic consequences in livestock production worldwide, and increasing relevance to human health in developing countries. Although flukicidal drugs are available, re-infection and emerging resistance are demanding new efficient and inexpensive control strategies. Understanding the molecular mechanisms underlying the host-parasite interaction provide relevant clues in this search, while enlightening the physiological adaptations to parasitism. Genomics and transcriptomics are still in their infancy in F. hepatica, with very scarce information available from the invasive newly excysted juveniles (NEJ). Here we provide an initial glimpse to the transcriptomics of the NEJ, the first stage to interact with the mammalian host.Results: We catalogued more than 500 clusters generated from the analysis of F. hepatica juvenile expressed sequence tags (EST), several of them not detected in the adult stage. A set of putative F. hepatica specific transcripts, and a group of sequences conserved exclusively in flatworms were identified. These novel sequences along with a set of parasite transcripts absent in the host genomes are putative new targets for future anti-parasitic drugs or vaccine development.Comparisons of the F. hepatica sequences with other metazoans genomes or EST databases were consistent with the basal positioning of flatworms in the bilaterian phylogeny. Notably, GC content, codon usage and amino acid frequencies are remarkably different in Schistosomes to F. hepatica and other trematodes.Functional annotation of predicted proteins showed a general representation of diverse biological functions. Besides proteases and antioxidant enzymes expected to participate in the early interaction with the host, various proteins involved in gene expression, protein synthesis, cell signaling and mitochondrial enzymes were identified. Differential expression of secreted protease gene family members between juvenile and adult stages may respond to different needs during host colonization.Conclusion: The knowledge of the genes expressed by the invasive stage of Fasciola hepatica is a starting point to unravel key aspects of this parasite's biology. The integration of the emerging transcriptomics, and proteomics data and the advent of functional genomics tools in this organism are positioning F. hepatica as an interesting model for trematode biology.
AB - Background: The common liver fluke Fasciola hepatica is the agent of a zoonosis with significant economic consequences in livestock production worldwide, and increasing relevance to human health in developing countries. Although flukicidal drugs are available, re-infection and emerging resistance are demanding new efficient and inexpensive control strategies. Understanding the molecular mechanisms underlying the host-parasite interaction provide relevant clues in this search, while enlightening the physiological adaptations to parasitism. Genomics and transcriptomics are still in their infancy in F. hepatica, with very scarce information available from the invasive newly excysted juveniles (NEJ). Here we provide an initial glimpse to the transcriptomics of the NEJ, the first stage to interact with the mammalian host.Results: We catalogued more than 500 clusters generated from the analysis of F. hepatica juvenile expressed sequence tags (EST), several of them not detected in the adult stage. A set of putative F. hepatica specific transcripts, and a group of sequences conserved exclusively in flatworms were identified. These novel sequences along with a set of parasite transcripts absent in the host genomes are putative new targets for future anti-parasitic drugs or vaccine development.Comparisons of the F. hepatica sequences with other metazoans genomes or EST databases were consistent with the basal positioning of flatworms in the bilaterian phylogeny. Notably, GC content, codon usage and amino acid frequencies are remarkably different in Schistosomes to F. hepatica and other trematodes.Functional annotation of predicted proteins showed a general representation of diverse biological functions. Besides proteases and antioxidant enzymes expected to participate in the early interaction with the host, various proteins involved in gene expression, protein synthesis, cell signaling and mitochondrial enzymes were identified. Differential expression of secreted protease gene family members between juvenile and adult stages may respond to different needs during host colonization.Conclusion: The knowledge of the genes expressed by the invasive stage of Fasciola hepatica is a starting point to unravel key aspects of this parasite's biology. The integration of the emerging transcriptomics, and proteomics data and the advent of functional genomics tools in this organism are positioning F. hepatica as an interesting model for trematode biology.
KW - Animals
KW - Expressed Sequence Tags
KW - Fasciola hepatica/genetics
KW - Gene Expression Profiling
KW - Host-Parasite Interactions
UR - http://www.scopus.com/inward/record.url?scp=77950680692&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-11-227
DO - 10.1186/1471-2164-11-227
M3 - Article
C2 - 20374642
AN - SCOPUS:77950680692
SN - 1471-2164
VL - 11
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 227
ER -