Texture information-based hybrid methodology for the segmentation of SAR images

Pankaj K. Singh, Nitesh Sinha, Karan Sikka, Amit K. Mishra*

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

2 Dyfyniadau (Scopus)

Crynodeb

Image segmentation is one of the crucial tasks in the postprocessing of synthetic aperture radar (SAR) images. However, SAR images are textural in nature, marked by the textural patterns of widely disparate mean intensity values. This renders conventional multi-resolution techniques inefficient for the segmentation of these images. This article proposes a novel technique of combining both intensity and textural information for effective region classification. To achieve this, two new approaches, called Neighbourhood-basedMembership Ambiguity Correction (NMAC) and Dynamic SlidingWindow Size Estimation (DSWSE), have been proposed. The results obtained from the two schemes are combined, segregating the image into well-defined regions of distinct textures as well as intensities. Promising results have been obtained over the SAR images of Nordlinger Ries in the Swabian Jura and flood regions near the river Kosi in Bihar, India.

Iaith wreiddiolSaesneg
Tudalennau (o-i)4155-4173
Nifer y tudalennau19
CyfnodolynInternational Journal of Remote Sensing
Cyfrol32
Rhif cyhoeddi15
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 10 Awst 2011
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Texture information-based hybrid methodology for the segmentation of SAR images'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn