The Dirichlet problem in convex bounded domains for operators with L8-coefficients

Matthias Hieber, Ian Wood

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Crynodeb

Consider the Dirichlet problem for elliptic and parabolic equations in non-divergence form with variable coefficients in convex bounded domains of Rn. We prove solvability of the elliptic problem and maximal Lq-Lp-estimates for the solution of the parabolic problem provided the coefficients aij∈L∞ satisfy a Cordes condition and p∈(1,2] is close to 2. This implies that in two dimensions, i.e., n=2, the elliptic Dirichlet problem is always solvable if the associated operator is uniformly strongly elliptic, and p∈(1,2] is close to 2, for maximal Lq-Lp-regularity in the parabolic case an additional assumption on the growth of the coefficients is needed.
Iaith wreiddiolSaesneg
Tudalennau (o-i)721-734
Nifer y tudalennau14
CyfnodolynDifferential and Integral Equations
Cyfrol20
Rhif cyhoeddi7
StatwsCyhoeddwyd - 01 Gorff 2007

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'The Dirichlet problem in convex bounded domains for operators with L8-coefficients'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn