TY - JOUR
T1 - The influence of Bacillus Pasteurii on the nucleation and growth of Calcium Carbonate
AU - Mitchell, Andy
AU - Ferris, F. G.
PY - 2007/2/23
Y1 - 2007/2/23
N2 - Microcosm experiments were performed to identify the influence of bacterial cell surfaces on the morphology, mineralogy, size and solubility of CaCO3 precipitated in response to the enzymatic hydrolysis of urea in an artificial groundwater (AGW) by the ureolytic bacteria, Bacillus pasteurii. In each microcosm, B. pasteurii were contained within a cellulose dialysis membrane (10 K Dalton MWCO), resulting in bacteria-inclusive and bacteria-free AGW solution. Urea hydrolysis by B. pasteurii resulted in the production of ammonium and an increase in pH in the whole AGW solution. This initiated predominantly rhombohedral calcite precipitation at the same critical saturation state ( S critical = 12) in the B. pasteurii-inclusive and bacteria-free zone of the AGW, indicating the mineralogy and morphology of CaCO3 precipitation is not controlled by B. pasteurii surfaces. However, the temporal evolution of distinctly different lognormal crystal-size-distributions in the B. pasteurii-inclusive and bacteria-free zone of the AGW resulted from identical changes in bulk solution chemistry. Specifically, B. pasteurii increased the size and size variance of crystals, and led to a greater crystal growth rate throughout the experiments, relative to bacteria-free AGW. Calculated crystal solubility (ln K S0 ) was lower for crystals > 4000 nm in diameter, reflecting smaller molar surface areas. This suggests that the larger crystals generated in the presence of B. pasteurii have a lower affinity for re-dissolution than those generated in the bacteria-free AGW, which may act as a positive feedback to maintain larger crystal sizes in the presence of B. pasteurii. During ureolysis, higher bacterial concentrations may therefore generate larger and less soluble carbonate crystals. This has important implications for the adaptation of bacterial ureolysis as a method for precipitating calcium carbonate and co-precipitating metals and radionuclides in contaminated aquifers.
AB - Microcosm experiments were performed to identify the influence of bacterial cell surfaces on the morphology, mineralogy, size and solubility of CaCO3 precipitated in response to the enzymatic hydrolysis of urea in an artificial groundwater (AGW) by the ureolytic bacteria, Bacillus pasteurii. In each microcosm, B. pasteurii were contained within a cellulose dialysis membrane (10 K Dalton MWCO), resulting in bacteria-inclusive and bacteria-free AGW solution. Urea hydrolysis by B. pasteurii resulted in the production of ammonium and an increase in pH in the whole AGW solution. This initiated predominantly rhombohedral calcite precipitation at the same critical saturation state ( S critical = 12) in the B. pasteurii-inclusive and bacteria-free zone of the AGW, indicating the mineralogy and morphology of CaCO3 precipitation is not controlled by B. pasteurii surfaces. However, the temporal evolution of distinctly different lognormal crystal-size-distributions in the B. pasteurii-inclusive and bacteria-free zone of the AGW resulted from identical changes in bulk solution chemistry. Specifically, B. pasteurii increased the size and size variance of crystals, and led to a greater crystal growth rate throughout the experiments, relative to bacteria-free AGW. Calculated crystal solubility (ln K S0 ) was lower for crystals > 4000 nm in diameter, reflecting smaller molar surface areas. This suggests that the larger crystals generated in the presence of B. pasteurii have a lower affinity for re-dissolution than those generated in the bacteria-free AGW, which may act as a positive feedback to maintain larger crystal sizes in the presence of B. pasteurii. During ureolysis, higher bacterial concentrations may therefore generate larger and less soluble carbonate crystals. This has important implications for the adaptation of bacterial ureolysis as a method for precipitating calcium carbonate and co-precipitating metals and radionuclides in contaminated aquifers.
KW - Bacillus pasteurii
KW - ureolysis
KW - calcit precipitation
KW - crystal-size-distribution (CSD)
KW - groundwater
KW - bio-remediation
KW - dialysis tubing
KW - GALOPER
UR - http://hdl.handle.net/2160/41913
U2 - 10.1080/01490450600724233
DO - 10.1080/01490450600724233
M3 - Article
SN - 0149-0451
VL - 23
SP - 213
EP - 226
JO - Geomicrobiology Journal
JF - Geomicrobiology Journal
IS - 3-4
ER -