@article{231c624939404dddbf21efd8d4e82f3b,
title = "Theory of rotational columnar structures of soft spheres",
abstract = "There is a growing interest in cylindrical structures of hard and soft particles. A promising new method to assemble such structures has recently been introduced by Lee et al. [Lee, Gizynski, and Grzybowski, Adv. Mater. 29, 1704274 (2017)]. They used rapid rotations around a central axis to drive spheres of lower density than the surrounding fluid towards the axis. This resulted in different structures as the number of spheres is varied. Here, we present comprehensive analytic energy calculations for such self-assembled structures, based on a generic soft sphere model, from which we obtain a phase diagram. It displays interesting features, including peritectoid points. These analytic calculations are complemented by preliminary numerical simulations for finite sample sizes with soft spheres. A similar analytic approach could be used to study packings of spheres inside cylinders of fixed dimensions, but with a variation in the number of spheres.",
author = "J. Winkelmann and Adil Mughal and Williams, {D. B.} and Denis Weaire and S. Hutzler",
note = "Funding Information: Acknowledgments. This research was supported in part by a research grant from Science Foundation Ireland (SFI) under Grant No. 13/IA/1926 and from an Irish Research Council Postgraduate Scholarship (Project ID No. GOIPG/2015/1998). We also acknowledge the support of the MPNS COST Action MP1305 “Flowing matter” and the European Space Agency ESA MAP Metalfoam (AO-99-075) and Soft Matter Dynamics (Contract No. 4000115113). A.M. acknowledges the TCD Visiting Professorships and Fellowships Benefaction Fund. We would like to thank the anonymous reviewers for many valid suggestions and comments. Funding Information: This research was supported in part by a research grant from Science Foundation Ireland (SFI) under Grant No. 13/IA/1926 and from an Irish Research Council Postgraduate Scholarship (Project ID No. GOIPG/2015/1998). We also acknowledge the support of the MPNS COST Action MP1305 {"}Flowing matter{"} and the European Space Agency ESA MAP Metalfoam (AO-99-075) and Soft Matter Dynamics (Contract No. 4000115113). A.M. acknowledges the TCD Visiting Professorships and Fellowships Benefaction Fund. We would like to thank the anonymous reviewers for many valid suggestions and comments. Publisher Copyright: {\textcopyright} 2019 American Physical Society.",
year = "2019",
month = feb,
day = "25",
doi = "10.1103/PhysRevE.99.020602",
language = "English",
volume = "99",
journal = "Physical Review E",
issn = "1539-3755",
publisher = "American Physical Society",
number = "2",
}