Time domain classification of transient radio frequency interference

Daniel Czech, Amit Kumar Mishra, Michael Inggs

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

6 Dyfyniadau (Scopus)

Crynodeb

Short, transient radio-frequency interference (RFI) events could threaten the quality of astronomical observations made by new and planned radio telescopes such as MeerKAT, the SKA and HERA in the radio quiet reserve in South Africa. Because they are so short, often of the order of microseconds long, these events are difficult to detect and identify in the time-frequency plots typically produced by RFI monitoring systems. In this paper, we record and analyse a dataset of the time domain RFI signals of nine typical transient RFI sources. We show that it is possible to classify such transient signals in the time domain according to their source using Principal Components Analysis (PCA) and Kernel PCA. Using an adapted measure of cluster separation, we show that Kernel PCA is significantly better than standard PCA at distinguishing transient RFI sources from one another.

Iaith wreiddiolSaesneg
Teitl2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
CyhoeddwrIEEE Press
Tudalennau302-305
Nifer y tudalennau4
ISBN (Electronig)9781509033324
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 10 Gorff 2016
Cyhoeddwyd yn allanolIe
Digwyddiad36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, Tsieina
Hyd: 10 Gorff 201615 Gorff 2016

Cyfres gyhoeddiadau

EnwInternational Geoscience and Remote Sensing Symposium (IGARSS)
Cyfrol2016-November

Cynhadledd

Cynhadledd36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
Gwlad/TiriogaethTsieina
DinasBeijing
Cyfnod10 Gorff 201615 Gorff 2016

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Time domain classification of transient radio frequency interference'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn