UESMANN: A Feed-Forward Network Capable of Learning Multiple Functions

James Finnis, Mark Neal

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddPennod

Crynodeb

A number of types of neural network have been shown to be useful for a wide range of tasks, and can be “trained” in a large number of ways. This paper considers how it might be possible to train and run neural networks to respond in different ways under different prevailing circumstances, achieving smooth transitions between multiple learned behaviours in a single network. This type of behaviour has been shown to be useful in a range of applications, such as maintenance of homeostasis. We introduce a novel technique for training multilayer perceptrons which improves on the transitional behaviour of many existing methods, and permits explicit training of multiple behaviours in a single network using gradient descent.
Iaith wreiddiolSaesneg
TeitlFrom Animals to Animats 14
Is-deitl14th International Conference on Simulation of Adaptive Behavior, SAB 2016, Aberystwyth, UK, August 23-26, 2016, Proceedings
GolygyddionElio Tuci, Alexandros Giagkos, Myra Wilson, John Hallam
CyhoeddwrSpringer Nature
Tudalennau101-112
Nifer y tudalennau12
Argraffiad1
ISBN (Electronig)9783319434889
ISBN (Argraffiad)9783319434872
StatwsCyhoeddwyd - 10 Awst 2016
Digwyddiad14th International Conference on Simulation of Adaptive Behaviour - Aberystwyth, Teyrnas Unedig Prydain Fawr a Gogledd Iwerddon
Hyd: 23 Awst 201626 Awst 2016

Cyfres gyhoeddiadau

EnwLecture Notes in Computer Science
CyhoeddwrSpringer
Cyfrol9825
ISSN (Argraffiad)0302-9743

Cynhadledd

Cynhadledd14th International Conference on Simulation of Adaptive Behaviour
Gwlad/TiriogaethTeyrnas Unedig Prydain Fawr a Gogledd Iwerddon
DinasAberystwyth
Cyfnod23 Awst 201626 Awst 2016

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'UESMANN: A Feed-Forward Network Capable of Learning Multiple Functions'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn