Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting

Ziming Zeng, Tony Shepherd, Reyer Zwiggelaar

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

2 Dyfyniadau (Scopus)

Crynodeb

This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOIs, then an alpha matting method is used to eliminate false negative classification and refine the segmentation results. We have validated our method on real PET images of head-and-neck cancer patients as well as images of a custom designed PET phantom. Experiments show that our method can generate more accurate segmentation results compared with alternative approaches.
Iaith wreiddiolSaesneg
Teitl2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Is-deitlEMBC 2012
CyhoeddwrIEEE Press
Tudalennau2339-2342
Nifer y tudalennau4
ISBN (Electronig)978-1-4577-1787-1
ISBN (Argraffiad)978-1-4244-4119-8
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 28 Awst 2012

Cyfres gyhoeddiadau

EnwProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Argraffiad)1557-170X

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn