Unsupervised Tumour Segmentation in PET using Local and Global Intensity-Fitting Active Surface and Alpha Matting

Ziming Zeng, Jue Wang, Bernie Tiddeman, Reyer Zwiggelaar

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

195 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

This paper proposes an unsupervised tumour segmentation approach for PET data. The method computes the volumes of interest (VOIs) with sub-voxel precision by considering the limited image resolution and partial volume effects. First, an improved anisotropic diffusion filter is used to remove image noise. A hierarchical local and global intensity active surface modelling scheme is then applied to segment VOIs, followed by an alpha matting step to further refine the segmentation boundary. The proposed method is validated on real PET images of head-and-neck cancer patients with ground truth provided by human experts, as well as custom-designed phantom PET images with objective ground truth. Experimental results show that our method outperforms previous automatic approaches in terms of segmentation accuracy.
Iaith wreiddiolSaesneg
Tudalennau (o-i)1530-1544
Nifer y tudalennau14
CyfnodolynComputers in Biology and Medicine
Cyfrol43
Rhif cyhoeddi10
Dyddiad ar-lein cynnar06 Awst 2013
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Hyd 2013

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Unsupervised Tumour Segmentation in PET using Local and Global Intensity-Fitting Active Surface and Alpha Matting'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn