Using retinex for point selection in 3D shape registration

Yonghuai Liu, Ralph R. Martin, Luigi de Dominicis, Baihua Li

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

14 Dyfyniadau (Scopus)
124 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

Inspired by retinex theory, we propose a novel method for selecting key points from a depth map of a 3D freeform shape; we also use these key points as a basis for shape registration. To find key points, first, depths are transformed using the Hotelling method and normalized to reduce their dependence on a particular viewpoint. Adaptive smoothing is then applied using weights which decrease with spatial gradient and local inhomogeneity; this preserves local features such as edges and corners while ensuring smoothed depths are not reduced. Key points are those with locally maximal depths, faithfully capturing shape. We show how such key points can be used in an efficient registration process, using two state-of-the-art iterative closest point variants. A comparative study with leading alternatives, using real range images, shows that our approach provides informative, expressive, and repeatable points leading to the most accurate registration results
Iaith wreiddiolSaesneg
Tudalennau (o-i)2126-2142
CyfnodolynPattern Recognition
Cyfrol47
Rhif cyhoeddi6
Dyddiad ar-lein cynnar15 Ion 2014
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - Meh 2014

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Using retinex for point selection in 3D shape registration'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn