UWB based dielectric material characterization using PCNN based ASIN framework

Santu Sardar, Amit K. Mishra

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

Crynodeb

A non-destructive method for shape invariant dielectric material characterization by estimating their relative dielectric constant using Pulse Coupled Neural Network (PCNN) based Application Specific Instrumentation (ASIN) Framework with Ultra Wide Band (UWB) sensors is discussed in this paper. The property of an electromagnetic wave changes due to the effects of relative dielectric constant & conductivity of a dielectric material, which changes reflection or transmission signal in terms of it's amplitude and spread. This property can be utilized to estimate the relative dielectric constant of a dielectric material. First, our implementation is compared to existing approaches to establish the superiority of the proposed method. In the next step, we established the geometric shape invariance property of our work i.e. this method can estimate the dielectric property of a material irrespective of its geometric shape. These approaches are validated using Finite Difference Time Domain (FDTD) simulation.

Iaith wreiddiolSaesneg
Teitl2014 International Conference on Advances in Electrical Engineering, ICAEE 2014
CyhoeddwrIEEE Press
Nifer y tudalennau5
ISBN (Electronig)978-1-4799-3543-7
ISBN (Argraffiad)9781479935420
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 09 Ion 2014
Cyhoeddwyd yn allanolIe
Digwyddiad2014 International Conference on Advances in Electrical Engineering, ICAEE 2014 - Vellore, Tamilnadu, India
Hyd: 09 Ion 201411 Ion 2014

Cyfres gyhoeddiadau

Enw2014 International Conference on Advances in Electrical Engineering, ICAEE 2014

Cynhadledd

Cynhadledd2014 International Conference on Advances in Electrical Engineering, ICAEE 2014
Gwlad/TiriogaethIndia
DinasVellore, Tamilnadu
Cyfnod09 Ion 201411 Ion 2014

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'UWB based dielectric material characterization using PCNN based ASIN framework'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn