V-Words, Lyndon Words and Substring circ-UMFFs

Jacqueline W. Daykin, Neerja Mhaskar*, W. F. Smyth

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

Crynodeb

We say that a family W of strings over Σ+ forms a Unique Maximal Factorization Family if and only if for every w∈ W, w has a unique maximal factorization. Then an UMFF W is a circ-UMFF whenever it contains exactly one rotation of every primitive string x∈ Σ+. V-order is a non-lexicographical total ordering on strings that determines a circ-UMFF. In this paper we propose a generalization of circ-UMFF called the substring circ-UMFF and extend the combinatorial research on V-order by investigating connections to Lyndon words. Then we extend concepts to considering any total order. Applications of this research arise in efficient text indexing, compression, and search tasks.

Iaith wreiddiolSaesneg
TeitlCombinatorial Optimization and Applications - 16th International Conference, COCOA 2023, Proceedings
GolygyddionWeili Wu, Jianxiong Guo
CyhoeddwrSpringer Nature
Tudalennau471-484
Nifer y tudalennau14
ISBN (Argraffiad)9783031496103
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2024
Digwyddiad16th Annual International Conference on Combinatorial Optimization and Applications, COCOA 2023 - Hawai, Unol Daleithiau America
Hyd: 15 Rhag 202317 Rhag 2023

Cyfres gyhoeddiadau

EnwLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Cyfrol14461 LNCS
ISSN (Argraffiad)0302-9743
ISSN (Electronig)1611-3349

Cynhadledd

Cynhadledd16th Annual International Conference on Combinatorial Optimization and Applications, COCOA 2023
Gwlad/TiriogaethUnol Daleithiau America
DinasHawai
Cyfnod15 Rhag 202317 Rhag 2023

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'V-Words, Lyndon Words and Substring circ-UMFFs'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn