Zero-shot sketch-based image retrieval via adaptive relation-aware metric learning

Yang Liu*, Yuhao Dang, Xinbo Gao, Jungong Han, Ling Shao

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

6 Dyfyniadau (Scopus)

Crynodeb

Retrieving natural images with the query sketches under the zero-shot scenario is known as zero-shot sketch-based image retrieval (ZS-SBIR). Most of the best-performing methods adapt the triplet loss to learn projections that map natural images and sketches to a latent embedding space. They nevertheless neglect the modality gap between the hand-drawn sketches and the photos and consider no difference between any two incorrect classes, which limits their performance in real use cases. Towards this end, we put forward a simple and effective model, which adopts relation-aware metric learning to suppress the modality gap between the sketches and the photos. We also propose an adaptive margin that utilizes each anchor in embedding space to improve clustering ability in metric learning. Extensive experiments on the Sketchy and TU-Berlin datasets show the dominant position of our proposed model over SOTA competitors.

Iaith wreiddiolSaesneg
Rhif yr erthygl110452
CyfnodolynPattern Recognition
Cyfrol152
Dyddiad ar-lein cynnar01 Ebr 2024
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 31 Awst 2024

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Zero-shot sketch-based image retrieval via adaptive relation-aware metric learning'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn