Data to support "An Experimental and Theoretical Determination of Oscillatory Shear-Induced Crystallization Processes in Viscoelastic Photonic Crystal Media"

  • Chris Finlayson (Creator)
  • Giselle Rosetta (Contributor)
  • J. J. Baumberg (Contributor)

Dataset

Description

A study is presented of the oscillatory shear-ordering dynamics of viscoelastic photonic crystal media, using an optical shear cell. The hard-sphere/”sticky”-shell design of these polymeric composite particles produces athermal, quasi-solid rubbery media, with a characteristic viscoelastic ensemble response to applied shear. Monotonic crystallization processes, as directly measured by the photonic stopband transmission, are tracked as a function of strain amplitude, oscillation frequency, and temperature. A complementary generic spatio-temporal model is developed of crystallization due to shear-dependent interlayer viscosity, giving propagating crystalline fronts with increasing applied strain, and a gradual transition from interparticle disorder to order. The introduction of a competing shear-induced flow degradation process, dependent on the global shear rate, gives solutions with both amplitude and frequency dependence. The extracted crystallization timescales show parametric trends which are in good qualitative agreement with experimental observations.
Date made available08 Sept 2021
PublisherPrifysgol Aberystwyth | Aberystwyth University
Date of data productionJun 2018 - Sept 2021

Cite this