Personal profile

Research interests

The aim of my research is to understand the molecular and physiological control of morphologies in Miscanthus that contribute to efficient resource capture and utilisation and to develop molecular tools to enable efficient breeding strategies in Miscanthus. The work will provide fundamental insight into the genetic and environmental interactions determining Miscanthus development and how morphological change and physiological processes contribute to the capture of light and water and to nutrient use efficiency. This project will also develop genetic resources for Miscanthus including a genetic map and will test the syntenic relationship with other crops.

Research highlights include the following objectives:

  1. To determine variation in morphologies relevant to resource capture including, plant architecture, early season establishment, leaf area and senescence and to test the impact that these morphological changes have on resource capture and yield.
  2. To determine the morphological and physiological responses of Miscanthus to environmental signals in plot-based and controlled environment studies focusing initially on light as a resource and signal to reveal novel insights into photomorphogenesis in grass species.
  3. To develop markers and a genetic map for Miscanthus and to use markers for association and QTL mapping of morphological and compositional traits in Miscanthus.
  4. To determine the impact of senescence on crop quality, nutrient use efficiency and crop yield.
  5. To determine the extent of synteny with other crop species such as Sorghum and maize.
  6. To develop innovative phenotyping analyses including the use of high-throughput phenomics studies.
  7. To characterise gene expression in Miscanthus from senescence associated genes and abiotic stress genes.

Profile

I graduated in Microbiology and Virology and received a doctorate in molecular microbiology from Warwick University working with Professor David Hodgson. My PhD was studying the mechanism of light induction from a promoter controlling carotenogenesis in Myxobacteria.
Since then I have worked in plant molecular biology and physiology, developing interests in the molecular mechanisms determining plant physiology and morphology. This included 7 years working with Professor Harry Smith at Leicester University studying photomorphogenesis and the biotechnological application of phytochrome. After a move to Aberystwyth I worked at IGER studying senescence and the induction of a stay-green phenotype in Maize (with Professor Howard Thomas); molecular determinants of apomixis (with Professor Philip Morris) and I now lead a project on Miscanthus Molecular Genetics and Crop Performance (with ).

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 2 - Zero Hunger
  • SDG 6 - Clean Water and Sanitation
  • SDG 7 - Affordable and Clean Energy
  • SDG 8 - Decent Work and Economic Growth
  • SDG 9 - Industry, Innovation, and Infrastructure
  • SDG 11 - Sustainable Cities and Communities
  • SDG 12 - Responsible Consumption and Production
  • SDG 13 - Climate Action
  • SDG 15 - Life on Land

Fingerprint

Dive into the research topics where Paul Robson is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or