Molecular Genetics of Miscanthus

Project: Externally funded research

Project Details


The commercially grown variety of Miscanthus (M. x giganteus), is a naturally occurring triploid hybrid between M. sacchariflorus (4x) and M. sinensis (2x). The genetics of both parent species are being studied to evaluate the degree of diversity that exists in these and related species. The development and application of molecular biology and genomics technologies to Miscanthus is providing the basic genetic tools such as BAC libraries, transformation, and molecular markers for the development of genetic maps. These tools are required to associate genotype to phenotype for both performance and quality traits as part of fundamental research on complex traits in Miscanthus and also to underpin plant breeding. Candidate genes for yield and compositional associated traits, identified from the literature, databases, transcriptomic analyses and more targeted studies, will be mapped and related to quantitative trait loci (QTL) on the Miscanthus genetic map. The phenotype data is coming from the study of a diversity collection of 244 different genotypes. The genetic map and use of cross species markers will enable an estimate of the extent of synteny between Miscanthus and related C4 grasses including Sorghum, maize, switchgrass and sugarcane. The use of markers of known map position with other monocots will enable the use of implied QTL and candidate genes from the wealth of studies in C4 and other grasses. Association of phenotype to genotype is being performed in the diversity population and a mapping population created to study flowering time. New Miscanthus populations have and are being developed to study a wider range of traits. In addition Miscanthus transformation has been established and used to transform plants including with a Trichoderma risei ferulic acid esterase (FAE) gene.
Effective start/end date01 Apr 200831 Mar 2012


  • Biotechnology and Biological Sciences Research Council: £998,400.00

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 2 - Zero Hunger
  • SDG 6 - Clean Water and Sanitation
  • SDG 7 - Affordable and Clean Energy
  • SDG 13 - Climate Action
  • SDG 15 - Life on Land


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.