Abstract
For underwater vehicles to successfully detect and navigate turbulent flows, sensing the fluid interactions that occur is required. Fish possess a unique sensory organ called the lateral line. Sensory units called neuromasts are distributed over their body, and provide fish with flow-related information. In this study, a three-dimensional fish-shaped head, instrumented with pressure sensors, was used to investigate the pressure signals for relevant hydrodynamic stimuli to an artificial lateral line system. Unsteady wakes were sensed with the objective to detect the edges of the hydrodynamic trail and then explore and characterize the periodicity of the vorticity. The investigated wakes (Kármán vortex streets) were formed behind a range of cylinder diameter sizes (2.5, 4.5 and 10 cm) and flow velocities (9.9, 19.6 and 26.1 cm s−1). Results highlight that moving in the flow is advantageous to characterize the flow environment when compared with static analysis. The pressure difference from foremost to side sensors in the frontal plane provides us a useful measure of transition from steady to unsteady flow. The vortex shedding frequency (VSF) and its magnitude can be used to differentiate the source size and flow speed. Moreover, the distribution of the sensing array vertically as well as the laterally allows the Kármán vortex paired vortices to be detected in the pressure signal as twice the VSF
Original language | English |
---|---|
Number of pages | 13 |
Journal | Interface |
Volume | 11 |
Issue number | 99 |
Early online date | 30 Jul 2014 |
DOIs | |
Publication status | Published - 06 Oct 2014 |
Externally published | Yes |
Keywords
- artificial lateral line
- three dimensional
- pressure sensing
- aquatic navigation
- Karma vortex street