TY - JOUR
T1 - A global assessment of marine heatwaves and their drivers
AU - Holbrook, Neil J.
AU - Scannell, Hillary A.
AU - Gupta, Alexander Sen
AU - Benthuysen, Jessica A.
AU - Feng, Ming
AU - Oliver, Eric C. J.
AU - Alexander, Lisa V.
AU - Burrows, Michael T.
AU - Donat, Markus G.
AU - Hobday, Alistair J.
AU - Moore, Pippa
AU - Perkins-Kirkpatrick, Sarah E.
AU - Smale, Dan A.
AU - Straub, Sandra C.
AU - Wernberg, Thomas
N1 - Funding Information:
This contribution is an outcome from the working group ‘Marine Heatwaves—physical drivers and properties’ (www.marineheatwaves.org) hosted at the University of Western Australia (UWA) Oceans Institute by T.W., D.A.S., N.J.H., and E.C.J.O. in January 2015. The working group received support for the workshop from a UWA Research Collaboration Award, a UWA School of Plant Biology synthesis grant, and the ARC Centre of Excellence for Climate System Science (ARCCSS: CE110001028). This work contributes to the World Climate Research Program (WCRP) Grand Challenge on Extremes. This paper makes a contribution to the interests and activities of the International Commission on Climate of IAMAS/IUGG and National Environmental Science Programme (NESP) Earth Systems and Climate Change Hub (ESCC) Hub Project 2.3 (Grant No. B0024391). N.J.H. and L.V.A. acknowledge support from the ARC Centre of Excellence for Climate Extremes (Grant No. CE170100023), S.E.P. was supported by ARC grant DE140100952, M.G.D. by ARC grant DE150100456, D.S. by NERC grant IRF NE/ K008439/1, T.W. by ARC grant FT110100174 and DP170100023. M.T.B. by NERC grant NE/J024082/1, J.B. acknowledges support from CE110001028, E.C.J.O. by ARC grant FS110200029, P.J.M. by Marie Curie CIG PCIG10-GA-2011–303685 and NERC grant NE/J024082/1, S.C.S. by an Australian Government RTP scholarship. Thanks to Dr Axel Durand for assistance with the Mendeley database. The daily 0.25° resolution and the weekly 1° resolution NOAA OI SST V2 data are provided by the NOAA/OAR/ESRLPSD, Boulder, Colorado, USA, at http://www.esrl.noaa.gov/psd/. Finally, we would like to thank the three reviewers (Nathan Mantua and two anonymous) for their detailed and constructive comments, which led to significant improvements in the final manuscript.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Marine heatwaves (MHWs) can cause devastating impacts to marine life. Despite the serious consequences of MHWs, our understanding of their drivers is largely based on isolated case studies rather than any systematic unifying assessment. Here we provide the first global assessment under a consistent framework by combining a confidence assessment of the historical refereed literature from 1950 to February 2016, together with the analysis of MHWs determined from daily satellite sea surface temperatures from 1982–2016, to identify the important local processes, large-scale climate modes and teleconnections that are associated with MHWs regionally. Clear patterns emerge, including coherent relationships between enhanced or suppressed MHW occurrences with the dominant climate modes across most regions of the globe – an important exception being western boundary current regions where reports of MHW events are few and ocean-climate relationships are complex. These results provide a global baseline for future MHW process and prediction studies
AB - Marine heatwaves (MHWs) can cause devastating impacts to marine life. Despite the serious consequences of MHWs, our understanding of their drivers is largely based on isolated case studies rather than any systematic unifying assessment. Here we provide the first global assessment under a consistent framework by combining a confidence assessment of the historical refereed literature from 1950 to February 2016, together with the analysis of MHWs determined from daily satellite sea surface temperatures from 1982–2016, to identify the important local processes, large-scale climate modes and teleconnections that are associated with MHWs regionally. Clear patterns emerge, including coherent relationships between enhanced or suppressed MHW occurrences with the dominant climate modes across most regions of the globe – an important exception being western boundary current regions where reports of MHW events are few and ocean-climate relationships are complex. These results provide a global baseline for future MHW process and prediction studies
UR - http://www.scopus.com/inward/record.url?scp=85067358586&partnerID=8YFLogxK
U2 - 10.1038/s41467-019-10206-z
DO - 10.1038/s41467-019-10206-z
M3 - Article
C2 - 31201309
SN - 2041-1723
VL - 10
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 2624
ER -