A mycobacterial growth inhibition assay (MGIA) for bovine TB vaccine development

Ilaria Pepponi*, Bhagwati Khatri, Rachel Tanner, Bernardo Villarreal-Ramos, Martin Vordermeier, Helen McShane

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (SciVal)
54 Downloads (Pure)


Human tuberculosis remains a significant cause of mortality and morbidity throughout the world. The global economic impact of bovine TB is considerable. An effective vaccine would be the most cost-effective way to control both epidemics, particularly in emerging economies. TB vaccine research would benefit from the identification of an immune correlate of protection with which vaccines could be gated at both preclinical and clinical levels. In-vitro mycobacterial growth inhibition assays (MGIA) are functional assays that include most aspects of the complex host immune response to mycobacteria, and they may serve as functional immune correlates for vaccine development. We applied to cattle an MGIA that was developed for use with human and murine samples. Several technical difficulties were encountered while transferring it to the cattle model. However, our data demonstrate that the assay was not discriminatory in cattle and further work is needed before using it for bovine TB vaccine development.

Original languageEnglish
Pages (from-to)118-122
Number of pages5
Early online date22 Jul 2017
Publication statusPublished - 01 Sept 2017


  • Bovine tuberculosis
  • Correlate of protection
  • Mycobacterial growth inhibition assay
  • Vaccination


Dive into the research topics of 'A mycobacterial growth inhibition assay (MGIA) for bovine TB vaccine development'. Together they form a unique fingerprint.

Cite this