TY - JOUR
T1 - A revised above-ground maximum biomass layer for the Australian continent
AU - Roxburgh, Stephen H.
AU - Karunaratne, Senani B.
AU - Paul, Keryn I.
AU - Lucas, Richard
AU - Armston, John A.
AU - Sun, Jingyi
N1 - Funding Information:
This work was funded in part by the Australian Government through The Department of the Environment and Energy. We thank Trevor Booth and Stephen Stewart for providing constructive criticism on a draft of the manuscript. Senani B. Karunaratne wishes to clarify that the views and opinions expressed in this research work do not necessarily reflect those of the Australian Government or the Minister for the Department of the Environment and Energy.
Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/1/15
Y1 - 2019/1/15
N2 - The carbon accounting model FullCAM is used in Australia’s National Greenhous Gas Inventory to provide estimates of carbon stock changes and emissions in response to deforestation and afforestation/reforestation. FullCAM-predicted above-ground woody biomass is heavily influenced by the parameter M, which defines the maximum upper limit to biomass accumulation for any location within the Australian continent. In this study we update FullCAM’s M spatial input layer through combining an extensive database of 5739 site-based records of above-ground biomass (AGB) with the Random Forest ensemble machine learning algorithm, with model predictions of AGB based on 23 environmental predictor covariates. A Monte-Carlo approach was used, allowing estimates of uncertainty to be calculated. Overall, the new biomass predictions for woodlands, with 20–50% canopy cover, were on average 49.5 ± 1.3 (s.d.) t DM ha−1, and very similar to existing model predictions of 48.5 t DM ha−1. This validates the original FullCAM model calibrations, which had a particular focus on accounting for greenhouse gas emissions in Australian woodlands. In contrast, the prediction of biomass of forests with a canopy cover >50% increased significantly, from 172.1 t DM ha−1, to 234.4 ± 5.1 t DM ha−1. The change in forest biomass was most pronounced at sub-continental scales, with the largest increases in the states of Tasmania (166 to 351 ± 22 t DM ha−1), Victoria (201 to 333 ± 14 t DM ha−1), New South Wales (210 to 287 ± 9 t DM ha−1), and Western Australia (103 to 264 ± 14 s.d. t DM ha−1). Testing of model predictions against independent data from the savanna woodlands of northern Australia, and from the high biomass Eucalyptus regnans forests of Victoria, provided confidence in the predictions across a wide range of forest types and standing biomass. When applied to the Australian Government’s National Inventory land clearing accounts there was an overall increase of 6% in continental emissions over the period 1970–2016. Greater changes were seen at sub-continental scales calculated within 6° × 4° analysis tiles, with differences in emissions varying from −21% to +35%. Further testing is required to assess the impacts on other land management activities covered by the National Inventory, such as reforestation; and at more local scales for sequestration projects that utilise FullCAM for determining abatement credits
AB - The carbon accounting model FullCAM is used in Australia’s National Greenhous Gas Inventory to provide estimates of carbon stock changes and emissions in response to deforestation and afforestation/reforestation. FullCAM-predicted above-ground woody biomass is heavily influenced by the parameter M, which defines the maximum upper limit to biomass accumulation for any location within the Australian continent. In this study we update FullCAM’s M spatial input layer through combining an extensive database of 5739 site-based records of above-ground biomass (AGB) with the Random Forest ensemble machine learning algorithm, with model predictions of AGB based on 23 environmental predictor covariates. A Monte-Carlo approach was used, allowing estimates of uncertainty to be calculated. Overall, the new biomass predictions for woodlands, with 20–50% canopy cover, were on average 49.5 ± 1.3 (s.d.) t DM ha−1, and very similar to existing model predictions of 48.5 t DM ha−1. This validates the original FullCAM model calibrations, which had a particular focus on accounting for greenhouse gas emissions in Australian woodlands. In contrast, the prediction of biomass of forests with a canopy cover >50% increased significantly, from 172.1 t DM ha−1, to 234.4 ± 5.1 t DM ha−1. The change in forest biomass was most pronounced at sub-continental scales, with the largest increases in the states of Tasmania (166 to 351 ± 22 t DM ha−1), Victoria (201 to 333 ± 14 t DM ha−1), New South Wales (210 to 287 ± 9 t DM ha−1), and Western Australia (103 to 264 ± 14 s.d. t DM ha−1). Testing of model predictions against independent data from the savanna woodlands of northern Australia, and from the high biomass Eucalyptus regnans forests of Victoria, provided confidence in the predictions across a wide range of forest types and standing biomass. When applied to the Australian Government’s National Inventory land clearing accounts there was an overall increase of 6% in continental emissions over the period 1970–2016. Greater changes were seen at sub-continental scales calculated within 6° × 4° analysis tiles, with differences in emissions varying from −21% to +35%. Further testing is required to assess the impacts on other land management activities covered by the National Inventory, such as reforestation; and at more local scales for sequestration projects that utilise FullCAM for determining abatement credits
KW - forest biomass
KW - random forest
KW - carbon accounting
KW - national greenhouse gas inventory
KW - National greenhouse gas inventory
KW - Forest biomass
KW - Carbon accounting
KW - Random forest
UR - http://www.scopus.com/inward/record.url?scp=85053750197&partnerID=8YFLogxK
U2 - 10.1016/j.foreco.2018.09.011
DO - 10.1016/j.foreco.2018.09.011
M3 - Article
SN - 0378-1127
VL - 432
SP - 264
EP - 275
JO - Forest Ecology and Management
JF - Forest Ecology and Management
ER -