Abstract
We present a procedure for amalgamating a net and a collection of designs into a single design. At first this amalgam is just point-regular, but it acquires additional regularities upon imposing restrictions on the ingredients. At its most regular, the amalgam is quasi-symmetric, and designs with the same parameters as those recently constructed by Bracken, McGuire and Ward appear. Along the way we discuss a class of designs generalising Hadamard designs, and we consider the problem of packing projective planes with disjoint line sets into the same point set.
Original language | English |
---|---|
Pages (from-to) | 841-852 |
Number of pages | 12 |
Journal | Bulletin of the London Mathematical Society |
Volume | 41 |
Issue number | 5 |
DOIs | |
Publication status | Published - 17 Oct 2009 |