Abstract
A major assumption for constructing an effective adaptive-network-based fuzzy inference system (ANFIS) is that sufficient training data are available. However, in many real-world applications, this assumption may not hold, thereby requiring alternative approaches. In light of this observation, this article focuses on automated construction of ANFISs in an effort to enhance the potential of the Takagi-Sugeno fuzzy regression models for situations where only limited training data are available. In particular, the proposed approach works by interpolating a group of fuzzy rules in a certain given domain with the assistance of existing ANFISs in its neighboring domains. The construction process involves a number of computational mechanisms, including a rule dictionary which is created by extracting the rules from the existing ANFISs; a group of rules which are interpolated by exploiting the local linear embedding algorithm to build an intermediate ANFIS; and a fine-tuning method which refines the resulting intermediate ANFIS. The experimental evaluation on both synthetic and real-world datasets is reported, demonstrating that when facing the data shortage situations, the proposed approach helps significantly improve the performance of the original ANFIS modeling mechanism.
Original language | English |
---|---|
Article number | 8913478 |
Pages (from-to) | 2773-2786 |
Number of pages | 14 |
Journal | IEEE Transactions on Cybernetics |
Volume | 51 |
Issue number | 5 |
Early online date | 26 Nov 2019 |
DOIs | |
Publication status | Published - 15 May 2021 |
Keywords
- Adaptive-network-based fuzzy inference system (ANFIS) construction
- data shortage
- group rule interpolation
- locally linear embedding (LLE)
- rule dictionary
- transfer learning