Antimicrobial polymers: The potential replacement of existing antibiotics?

Nor Fadhilah Kamaruzzaman*, Li Peng Tan, Ruhil Hayati Hamdan, Siew Shean Choong, Weng Kin Wong, Amanda Jane Gibson, Alexandru Chivu, Maria De Fatima Pina

*Corresponding author for this work

Research output: Contribution to journalReview Articlepeer-review

188 Citations (Scopus)
119 Downloads (Pure)

Abstract

Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: Compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.

Original languageEnglish
Article number2747
Number of pages31
JournalInternational Journal of Molecular Sciences
Volume20
Issue number11
DOIs
Publication statusPublished - 04 Jun 2019

Keywords

  • Antimicrobial polymers
  • Antimicrobial resistance
  • ESKAPE pathogens
  • Anti-Bacterial Agents/chemistry
  • Halogens/chemistry
  • Bacteria/drug effects
  • Humans
  • Structure-Activity Relationship
  • Bacterial Infections/drug therapy
  • Polymers/chemistry
  • Anti-Infective Agents/chemistry
  • Drug Resistance, Microbial
  • Animals
  • Chemical Phenomena
  • Molecular Structure
  • Drug Development
  • Population Surveillance
  • Surface-Active Agents/chemistry

Fingerprint

Dive into the research topics of 'Antimicrobial polymers: The potential replacement of existing antibiotics?'. Together they form a unique fingerprint.

Cite this