@article{de3b055136c742938bac640290c0d803,
title = "Area and volume of mid-latitude glacier-like forms on Mars",
abstract = "Although a substantial ice cover has been identified within the mid-latitudes of Mars, there is uncertainty regarding the formation, current and former volume, and dynamic evolution of these ice masses. Here, we present the first comprehensive ice volume estimate of martian glacier-like forms (GLFs) from systematic population scale mapping and volumetric analysis. The outlines of 1243 GLFs were manually delineated from 6 m per pixel Context Camera (CTX) images and the volume of each determined using a volume–area scaling approach. Our results show that GLFs cover a surface area of 11344 ± 393 km2 and have a total volume of 1744 ± 441 km3. Using two end-member scenarios for ice concentration by volume of 30% (pore ice) and 90% (debris-covered glacier ice), we calculate the volume of ice contained within GLFs to be between 523 ± 132 km3 (480 ± 121 Gt) and 1570 ± 397 km3 (1439 ± 364 Gt), equivalent to a mean global water layer 3 to 10 mm thick. We investigate the local topographic setting of each GLF by reference to the Mars Orbiter Laser Altimeter (MOLA) digital elevation model. Our analysis reveals that globally GLFs are on average larger in latitudes >36° and on slopes between 2 and 8°. In the northern hemisphere GLFs between 500 and 2500 m in elevation and in the southern hemisphere GLFs with a northern aspect are also larger on average. The observed spatial patterns of GLF landform and volume distribution suggests that regional to local meteorological and topographical conditions play an important role in GLF ice accumulation and/or preservation. Assuming a net accumulation rate of 10 mm a−1 typical of climatic excursions with high obliquity, we estimate a period of at least 13 ka is required to yield the average calculated GLF ice thickness of ∼130 m. Such a period is well within the timeframe of a high obliquity cycle (20–40 ka), suggesting that the current GLF volume could have formed during a single climate excursion",
keywords = "Mars, glaciation, glacier, water, climate change, GIS",
author = "Stephen Brough and Bryn Hubbard and Alun Hubbard",
note = "Funding Information: SB gratefully acknowledges support from Aberystwyth University through a Doctoral Career Development Scholarship. AH gratefully acknowledges support from the Research Council of Norway through its Centres of Excellence funding scheme, project number 223259 . We are grateful to Souness et al. (2012) and Levy et al. (2014) for making their inventory data, analysed within this study, freely available. We thank the Editor William McKinnon and reviewer Robert Craddock for their helpful and insightful comments. Publisher Copyright: {\textcopyright} 2018 Elsevier B.V.",
year = "2019",
month = feb,
day = "1",
doi = "10.1016/j.epsl.2018.11.031",
language = "English",
volume = "507",
pages = "10--20",
journal = "Earth and Planetary Science Letters",
issn = "0012-821X",
publisher = "Elsevier",
}