TY - JOUR
T1 - Assessing evidence for a common function of delay in causal learning and reward discounting
AU - Greville, W James
AU - Buehner, Marc J.
PY - 2012/11
Y1 - 2012/11
N2 - Time occupies a central role in both the induction of causal relationships and determining the subjective value of rewards. Delays devalue rewards and also impair learning of relationships between events. The mathematical relation between the time until a delayed reward and its present value has been characterized as a hyperbola-like function, and increasing delays of reinforcement tend to elicit judgments or response rates that similarly show a negatively accelerated decay pattern. Furthermore, neurological research implicates both the hippocampus and prefrontal cortex in both these processes. Since both processes are broadly concerned with the concepts of reward, value, and time, involve a similar functional form, and have been identified as involving the same specific brain regions, it seems tempting to assume that the two processes are underpinned by the same cognitive or neural mechanisms. We set out to determine experimentally whether a common cognitive mechanism underlies these processes, by contrasting individual performances on causal judgment and delay discounting tasks. Results from each task corresponded with previous findings in the literature, but no relation was found between the two tasks. The task was replicated and extended by including two further measures, the Barrett Impulsiveness Scale (BIS), and a causal attribution task. Performance on this latter task was correlated with results on the causal judgment task, and also with the non-planning component of the BIS, but the results from the delay discounting task was not correlated with either causal learning task nor the BIS. Implications for current theories of learning are considered.
AB - Time occupies a central role in both the induction of causal relationships and determining the subjective value of rewards. Delays devalue rewards and also impair learning of relationships between events. The mathematical relation between the time until a delayed reward and its present value has been characterized as a hyperbola-like function, and increasing delays of reinforcement tend to elicit judgments or response rates that similarly show a negatively accelerated decay pattern. Furthermore, neurological research implicates both the hippocampus and prefrontal cortex in both these processes. Since both processes are broadly concerned with the concepts of reward, value, and time, involve a similar functional form, and have been identified as involving the same specific brain regions, it seems tempting to assume that the two processes are underpinned by the same cognitive or neural mechanisms. We set out to determine experimentally whether a common cognitive mechanism underlies these processes, by contrasting individual performances on causal judgment and delay discounting tasks. Results from each task corresponded with previous findings in the literature, but no relation was found between the two tasks. The task was replicated and extended by including two further measures, the Barrett Impulsiveness Scale (BIS), and a causal attribution task. Performance on this latter task was correlated with results on the causal judgment task, and also with the non-planning component of the BIS, but the results from the delay discounting task was not correlated with either causal learning task nor the BIS. Implications for current theories of learning are considered.
KW - casual learning
KW - delay discounting
KW - reinforcement delay
KW - subjective reward value
KW - utility
UR - http://hdl.handle.net/2160/36510
U2 - 10.3389/fpsyg.2012.00460
DO - 10.3389/fpsyg.2012.00460
M3 - Article
C2 - 23162508
SN - 1664-1078
VL - 3
JO - Frontiers in Psychology
JF - Frontiers in Psychology
M1 - 460
ER -