Assessment of Bradykinesia in Parkinson's disease patients through a multi-parametric system

M. Pastorino, J. Cancela, M. T. Arredondo, M. Pansera, L. Pastor-Sanz, F Villagra, M. A. Pastor, J. A. Martin

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

The aim of this paper is to describe and present the results of the automatic detection and assessment of bradykinesia in motor disease patients using wireless, wearable accelerometers. The current work is related to a module of the PERFORM system, a FP7 project from the European Commission, that aims at providing an innovative and reliable tool, able to evaluate, monitor and manage patients suffering from Parkinson's disease. The assessment procedure was carried out through a developed C# library that detects the activities of the patient using an activity recognition algorithm and classifies the data using a Support Vector Machine trained with data coming from previous test phases. The accuracy between the output of the automatic detection and the evaluation of the clinician both expressed with the Unified Parkinson's disease Rating Scale, presents an average value of [68.3 ± 8.9]%. A meta-analysis algorithm is used in order to improve the accuracy to an average value of [74.4 ± 14.9]%. Future work will include a personalized training of the classifiers in order to achieve a higher level of accuracy.

Original languageEnglish
Pages (from-to)1810-3
Number of pages4
JournalAnnual International Conference of the IEEE Engineering in Medicine and Biology Society
Volume2011
DOIs
Publication statusPublished - 2011
Event2011 Annual International Conference : IEEE Engineering in Medicine and Biology, EMBC - Boston, United States of America
Duration: 30 Aug 201103 Sept 2011

Keywords

  • Actigraphy
  • Adult
  • Aged
  • Diagnosis, Computer-Assisted
  • Equipment Design
  • Equipment Failure Analysis
  • Female
  • Humans
  • Hypokinesia
  • Male
  • Middle Aged
  • Monitoring, Ambulatory
  • Parkinson Disease
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Support Vector Machine
  • Telemetry
  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'Assessment of Bradykinesia in Parkinson's disease patients through a multi-parametric system'. Together they form a unique fingerprint.

Cite this