TY - JOUR
T1 - Attribute Selection with Fuzzy Decision Reducts
AU - Cornelis, Chris
AU - Jensen, Richard
AU - Hurtado, Germán
AU - Slezak, Dominik
N1 - Cornelis, C., Jensen, R., Hurtado, G., Slezak, D. (2010). Attribute Selection with Fuzzy Decision Reducts. Information Sciences, 180 (2), 209-224
PY - 2010/1/15
Y1 - 2010/1/15
N2 - Rough set theory provides a methodology for data analysis based on the approximation of concepts in information systems. It revolves around the notion of discernibility: the ability to distinguish between objects, based on their attribute values. It allows to infer data dependencies that are useful in the fields of feature selection and decision model construction. In many cases, however, it is more natural, and more effective, to consider a gradual notion of discernibility. Therefore, within the context of fuzzy rough set theory, we present a generalization of the classical rough set framework for data-based attribute selection and reduction using fuzzy tolerance relations. The paper unifies existing work in this direction, and introduces the concept of fuzzy decision reducts, dependent on an increasing attribute subset measure. Experimental results demonstrate the potential of fuzzy decision reducts to discover shorter attribute subsets, leading to decision models with a better coverage and with comparable, or even higher accuracy.
AB - Rough set theory provides a methodology for data analysis based on the approximation of concepts in information systems. It revolves around the notion of discernibility: the ability to distinguish between objects, based on their attribute values. It allows to infer data dependencies that are useful in the fields of feature selection and decision model construction. In many cases, however, it is more natural, and more effective, to consider a gradual notion of discernibility. Therefore, within the context of fuzzy rough set theory, we present a generalization of the classical rough set framework for data-based attribute selection and reduction using fuzzy tolerance relations. The paper unifies existing work in this direction, and introduces the concept of fuzzy decision reducts, dependent on an increasing attribute subset measure. Experimental results demonstrate the potential of fuzzy decision reducts to discover shorter attribute subsets, leading to decision models with a better coverage and with comparable, or even higher accuracy.
KW - Rough sets
KW - Fuzzy sets
KW - Attribute selection
KW - Data analysis
KW - Decision reducts
U2 - 10.1016/j.ins.2009.09.008
DO - 10.1016/j.ins.2009.09.008
M3 - Article
SN - 0020-0255
VL - 180
SP - 209
EP - 224
JO - Information Sciences
JF - Information Sciences
IS - 2
ER -