Automated Video-Based Capture of Crustacean Fisheries Data Using Low-Power Hardware

Sebastian Gregory Dal Toe, Marie Neal, Natalie Hold, Charlotte Heney, Rebecca Turner, Emer McCoy, Muhammad Iftikhar, Bernard Tiddeman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This work investigates the application of Computer Vision to the problem of the automated counting and measuring of crabs and lobsters onboard fishing boats. The aim is to provide catch count and measurement data for these key commercial crustacean species. This can provide vital input data for stock assessment models, to enable the sustainable management of these species. The hardware system is required to be low-cost, have low-power usage, be waterproof, available (given current chip shortages), and able to avoid over-heating. The selected hardware is based on a Raspberry Pi 3A+ contained in a custom waterproof housing. This hardware places challenging limitations on the options for processing the incoming video, with many popular deep learning frameworks (even light-weight versions) unable to load or run given the limited computational resources. The problem can be broken into several steps: (1) Identifying the portions of the video that contain each individual animal; (2) Selecting a set of representative frames for each animal, e.g, lobsters must be viewed from the top and underside; (3) Detecting the animal within the frame so that the image can be cropped to the region of interest; (4) Detecting keypoints on each animal; and (5) Inferring measurements from the keypoint data. In this work, we develop a pipeline that addresses these steps, including a key novel solution to frame selection in video streams that uses classification, temporal segmentation, smoothing techniques and frame quality estimation. The developed pipeline is able to operate on the target low-power hardware and the experiments show that, given sufficient training data, reasonable performance is achieved.

Original languageEnglish
Article number7897
Number of pages22
JournalSensors
Volume23
Issue number18
DOIs
Publication statusPublished - 15 Sept 2023

Keywords

  • computer vision
  • frame selection
  • keypoint detection

Fingerprint

Dive into the research topics of 'Automated Video-Based Capture of Crustacean Fisheries Data Using Low-Power Hardware'. Together they form a unique fingerprint.

Cite this