Breast Ultrasound Region of Interest Detection and Lesion Localisation

Moi Hoon Yap, Manu Goyal, Fatima Osman, Robert Marti, Erika R. E. Denton, Arne Juette, Reyer Zwiggelaar

Research output: Contribution to journalArticlepeer-review

89 Citations (Scopus)
355 Downloads (Pure)

Abstract

In current breast ultrasound computer aided diagnosis systems, the radiologist preselects a region of interest (ROI) as an input for computerised breast ultrasound image analysis. This task is time consuming and there is inconsistency among human experts. Researchers attempting to automate the process of obtaining the ROIs have been relying on image processing and conventional machine learning methods. We propose the use of a deep learning method for breast ultrasound ROI detection and lesion localisation. We use the most accurate object detection deep learning framework – Faster-RCNN with Inception-ResNet-v2 – as our deep learning network. Due to the lack of datasets, we use transfer learning and propose a new 3-channel artificial RGB method to improve the overall performance. We evaluate and compare the performance of our proposed methods on two datasets (namely, Dataset A and Dataset B), i.e. within individual datasets and composite dataset. We report the lesion detection results with two types of analysis: (1) detected point (centre of the segmented region or the detected bounding box) and (2) Intersection over Union (IoU). Our results demonstrate that the proposed methods achieved comparable results on detected point but with notable improvement on IoU. In addition, our proposed 3-channel artificial RGB method improves the recall of Dataset A. Finally, we outline some future directions for the research.

Original languageEnglish
Article number101880
Number of pages8
JournalArtificial Intelligence in Medicine
Volume107
Early online date29 May 2020
DOIs
Publication statusPublished - 01 Jul 2020

Keywords

  • Breast cancer
  • Breast ultrasound
  • Object detection
  • Region of interests
  • Diagnosis, Computer-Assisted
  • Image Processing, Computer-Assisted
  • Humans
  • Ultrasonography, Mammary
  • Female
  • Machine Learning
  • Deep Learning

Fingerprint

Dive into the research topics of 'Breast Ultrasound Region of Interest Detection and Lesion Localisation'. Together they form a unique fingerprint.

Cite this