Abstract
To test the hypothesis that sheep live weight (LW) could be used to improve enteric methane (CH4) emission calculations, mature ewes of 4 different breeds representative of the UK sheep industry were studied: Welsh Mountain, Scottish Blackface, Welsh Mule and Texel (n = 8 per breed). The ewes were housed and offered ad libitum access to fresh cut pasture of three different types, varying in digestibility: (a) a relatively high digestibility monoculture of perennial ryegrass (Lolium perenne), (b) a medium digestibility permanent pasture comprising a range of grass species, and (c) a relatively low digestibility native grassland pasture comprising mainly Molinia caerulea. Individual LW, feed dry matter intake (DMI), and CH4 emissions in chambers were measured. The linear functional relationship between DMI and CH4emissions was positive (r = 0.77) with little breed effect. The relationships between LW and DMI, and LW and CH4 emissions were also positive but weaker, regardless of pasture type. It is concluded that change to LW was a poor indicator of DMI and has limited value in the prediction of enteric CH4 emissions from mature ewes.
Original language | English |
---|---|
Article number | 17915 |
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Scientific Reports |
Volume | 5 |
DOIs | |
Publication status | Published - 09 Dec 2015 |
Keywords
- Animal Feed
- Animals
- Body Weight
- Breeding
- Methane
- Sheep
Fingerprint
Dive into the research topics of 'Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep?'. Together they form a unique fingerprint.Profiles
-
Jon Moorby
- Institute of Biological, Environmental & Rural Sciences (IBERS) - Chair in Livestock Science, Director of Farms
Person: Teaching And Research