Chasing chaos

Johnny Kelsey, Jon Timmis, Andrew Hone

Research output: Contribution to conferencePaperpeer-review

15 Citations (Scopus)


Both simple and hybrid genetic algorithms encounter difficulties when presented with a function which has multiple values. Similarly, changing environments or functions which change rapidly present other problems. This paper presents an algorithm that is capable of coping with both of these scenarios: it can accommodate multiple solutions simultaneously and can track changes in optima efficiently. The proposed B-cell algorithm is inspired by the natural immune system, which itself displays similar capabilities of tracking multiple, moving targets in the form of infectious agents. This paper employs two nonlinear mappings which display chaotic behaviour to demonstrate the effectiveness of the B-cell algorithm in tracking multiple, moving targets. A number of experiments are conducted and results reported from the B-cell algorithm and standard hybrid genetic algorithm approaches. These results show the benefit of the B-cell algorithm approach when compared against these heuristic approaches.

Original languageEnglish
Number of pages7
Publication statusPublished - 2003
Event2003 Congress on Evolutionary Computation, CEC 2003 - Canberra, ACT, Australia
Duration: 08 Dec 200312 Dec 2003


Conference2003 Congress on Evolutionary Computation, CEC 2003
CityCanberra, ACT
Period08 Dec 200312 Dec 2003


Dive into the research topics of 'Chasing chaos'. Together they form a unique fingerprint.

Cite this