Abstract
Within Australia, the discrimination and mapping of forest communities has traditionally been undertaken at the stand scale using stereo aerial photography. Focusing on mixed species forests in central south-east Queensland, this paper outlines an approach for the generation of tree species maps at the tree crown/cluster level using 1 m spatial resolution Compact Airborne Spectrographic Imager (CASI; 445.8 nm–837.7 nm wavelength) and the use of these to generate stand-level assessments of community composition. Following automated delineation of tree crowns/crown clusters, spectral reflectance from pixels representing maxima or mean-lit averages of channel reflectance or band ratios were extracted for a range of species including Acacia, Angophora, Callitris and Eucalyptus. Based on stepwise discriminant analysis, classification accuracies of dominant species were greatest (87% and 76% for training and testing datasets; n = 398) when the mean-lit spectra associated with a ratio of the reflectance (ρ) at 742 nm (ρ742) and 714 nm (ρ714) were used. The integration of 2.6 m HyMap (446.1 nm–2477.8 nm) spectra increased the accuracy of classification for some species, largely because of the inclusion of shortwave infrared wavebands. Similar increases in accuracy were achieved when classifications of field spectra resampled to CASI and HyMap wavebands were compared. The discriminant functions were applied subsequently to classify crowns within each image and produce maps of tree species distributions which were equivalent or better than those generated through aerial photograph interpretation. The research provides a new approach to tree species mapping, although some a priori knowledge of the occurrence of broad species groups is required. The tree maps have application to biodiversity assessment in Australian forests.
Original language | English |
---|---|
Pages (from-to) | 2088-2103 |
Number of pages | 16 |
Journal | Remote Sensing of Environment |
Volume | 112 |
Issue number | 5 |
DOIs | |
Publication status | Published - 15 May 2008 |
Keywords
- Forest species
- Classification
- Discriminant analysis
- Aerial photography
- Hyperspectral
- Australia
- Subtropical forest