Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone

Andrik Rampun, Ling Zheng, Paul Malcolm, Bernard Tiddeman, Reyer Zwiggelaar

Research output: Contribution to journalArticlepeer-review

35 Citations (SciVal)
288 Downloads (Pure)

Abstract

In this paper we propose a prostate cancer computer-aided diagnosis (CAD) system and suggest a set of discriminant texture descriptors extracted from T2-weighted MRI data which can be used as a good basis for a multimodality system. For this purpose, 215 texture descriptors were extracted and eleven different classifiers were employed to achieve the best possible results. The proposed method was tested based on 418 T2-weighted MR images taken from 45 patients and evaluated using 9-fold cross validation with five patients in each fold. The results demonstrated comparable results to existing CAD systems using multimodality MRI. We achieved an area under the receiver operating curve (A z ) values equal to $90.0\%\pm 7.6\%$ , $89.5\%\pm 8.9\%$ , $87.9\%\pm 9.3\%$ and $87.4\%\pm 9.2\%$ for Bayesian networks, ADTree, random forest and multilayer perceptron classifiers, respectively, while a meta-voting classifier using average probability as a combination rule achieved $92.7\%\pm 7.4\%$ .
Original languageEnglish
Pages (from-to)4796-4825
JournalPhysics in Medicine and Biology
Volume61
Issue number3
DOIs
Publication statusPublished - 07 Jun 2016

Keywords

  • computer aided detection
  • prostate cancer imaging
  • testure analysis
  • machine learning
  • prostate MRI
  • medical imaging
  • MRI imaging

Fingerprint

Dive into the research topics of 'Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone'. Together they form a unique fingerprint.

Cite this