Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub

Antica Culina*, Frank Adriaensen, Liam D. Bailey, Malcolm D. Burgess, Anne Charmantier, Ella F. Cole, Tapio Eeva, Erik Matthysen, Chloé R. Nater, Ben C. Sheldon, Bernt Erik Sæther, Stefan J.G. Vriend, Zuzana Zajkova, Peter Adamík, Lucy M. Aplin, Elena Angulo, Alexandr Artemyev, Emilio Barba, Sanja Barišić, Eduardo BeldaCemal Can Bilgin, Josefa Bleu, Christiaan Both, Sandra Bouwhuis, Claire J. Branston, Juli Broggi, Terry Burke, Andrey Bushuev, Carlos Camacho, Daniela Campobello, David Canal, Alejandro Cantarero, Samuel P. Caro, Maxime Cauchoix, Alexis Chaine, Mariusz Cichoń, Davor Ćiković, Camillo A. Cusimano, Caroline Deimel, André A. Dhondt, Niels J. Dingemanse, Blandine Doligez, Davide M. Dominoni, Claire Doutrelant, Szymon M. Drobniak, Anna Dubiec, Marcel Eens, Kjell Einar Erikstad, Silvia Espín, Damien R. Farine, Jordi Figuerola, Pınar Kavak Gülbeyaz, Arnaud Grégoire, Ian R. Hartley, Michaela Hau, Gergely Hegyi, Sabine Hille, Camilla A. Hinde, Benedikt Holtmann, Tatyana Ilyina, Caroline Isaksson, Arne Iserbyt, Elena Ivankina, Wojciech Kania, Bart Kempenaers, Anvar Kerimov, Jan Komdeur, Peter Korsten, Miroslav Král, Miloš Krist, Marcel Lambrechts, Carlos Esteban Lara, Agu Leivits, Andras Liker, Jaanis Lodjak, Marko Mägi, Mark C. Mainwaring, Raivo Mänd, Bruno Massa, Sylvie Massemin, Jesús Martínez-Padilla, Tomasz D. Mazgajski, Adele Mennerat, Juan Moreno, Alexia Mouchet, Shinichi Nakagawa, Jan-Åke Nilsson, Johan F. Nilsson, Ana Cláudia Norte, Kees van Oers, Markku Orell, Jaime Potti, John L. Quinn, Denis Réale, Tone Kristin Reiertsen, Balázs Rosivall, Andrew F. Russell, Seppo Rytkönen, Pablo Sánchez-Virosta, Eduardo S. A. Santos, Julia Schroeder, Juan Carlos Senar, Gábor Seress, Tore Slagsvold, Marta Szulkin, Céline Teplitsky6, Vallo Tilgar, Andrey Tolstoguzov, János Török, Mihai Valcu, Emma Vatka, Simon Verhulst, Hannah Watson, Teru Yuta, José M. Zamora-Marín, Marcel E Visser

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Citations (SciVal)
84 Downloads (Pure)


The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change).

To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (—a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting.

SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language).

The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.
Original languageEnglish
Pages (from-to)2147-2160
Number of pages14
JournalJournal of Animal Ecology
Issue number9
Early online date04 Dec 2020
Publication statusPublished - 15 Sept 2021
Externally publishedYes


  • birds
  • data standards
  • database
  • FAIR data
  • long-term studies
  • meta-data standards
  • research network
  • Animals
  • Metadata
  • Birds
  • Databases, Factual


Dive into the research topics of 'Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub'. Together they form a unique fingerprint.

Cite this