Coralline algae as a globally significant pool of marine dimethylated sulfur

Heidi L. Burdett*, Angela D. Hatton, Nicholas A. Kamenos

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

Marine algae are key sources of the biogenic sulfur compound dimethylsulphoniopropionate (DMSP), a vital component of the marine sulfur cycle. Autotrophic ecosystem engineers such as red coralline algae support highly diverse and biogeochemically active ecosystems and are known to be high DMSP producers, but their importance in the global marine sulfur cycle has not yet been appreciated. Using a global sampling approach, we show that red coralline algae are a globally significant pool of DMSP in the oceans, estimated to be ~110 × 1012 moles worldwide during the summer months. Latitude was a major driver of observed regional-scale variations, with peaks in polar and tropical climate regimes, reflecting the varied cellular functions for DMSP (e.g., as a cryoprotectant and antioxidant). A temperate coralline algal bed was investigated in more detail to also identify local-scale temporal variations. Here, water column DMSP was driven by water temperature, and to a lesser extent, cloud cover; two factors which are also vital in controlling coralline algal growth. This study demonstrates that coralline algae harbor a large pool of dimethylated sulfur, thereby playing a significant role in both the sulfur and carbon marine biogeochemical cycles. However, coralline algal habitats are severely threatened by projected climate change; a loss of this habitat may thus detrimentally impact oceanic sulfur and carbon biogeochemical cycling.

Original languageEnglish
Pages (from-to)1845-1853
Number of pages9
JournalGlobal Biogeochemical Cycles
Volume29
Issue number10
DOIs
Publication statusPublished - 01 Oct 2015
Externally publishedYes

Keywords

  • crustose coralline algae (CCA)
  • dimethylsulphide (DMS)
  • dimethylsulphoniopropionate (DMSP)
  • maerl
  • rhodolith
  • sulfur cycle

Fingerprint

Dive into the research topics of 'Coralline algae as a globally significant pool of marine dimethylated sulfur'. Together they form a unique fingerprint.

Cite this