Coupled FEM-BEM approach for axisymetrical heat transfer problems

Gennady Mishuris, M. Wrobel

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

This work deals with a stationary axisymmetrical heat transfer problem in a combined domain. This domain consists of half-space joined with a bounded cylinder. An important feature of the problem is the possible flux singularity along the edge points of the transmission surface. Domain decomposition is used to separate the subdomains. The solution for an auxiliary mixed boundary value problem in the half space is found analytically by means of Hankel integral transform. This allows us to reduce the main problem in the infinite domain to another problem defined in the bounded subdomain. In turn, the new problem contains a nonlocal boundary conditions along the transmission surface. These conditions incorporate all basic information about the infinite sub-domain (material properties, internal sources etc.). The problem is solved then by means of the Finite Element Method. In fact it might be considered as a coupled FEM-BEM approach. We use standard MATLAB PDE toolbox for the FEM analysis. As it is not possible for this package to introduce directly a non-classical boundary condition, we construct an appropriate iterative procedure and show the fast convergence of the main problem solution. The possible solution singularity is taken into account and the corresponding intensity coefficient of the heat flux is computed with a high accuracy. Numerical examples dealing with heat transfer between closed reservoir (filled with some substance) and the infinite foundation are discussed.
Original languageEnglish
Pages (from-to)740-745
Number of pages4
JournalDefect and Diffusion Forum
Volume273-276
DOIs
Publication statusPublished - 26 Oct 2009

Fingerprint

Dive into the research topics of 'Coupled FEM-BEM approach for axisymetrical heat transfer problems'. Together they form a unique fingerprint.

Cite this