Debris-covered glacier systems and associated glacial lake outburst flood hazards: Challenges and prospects

A. E. Racoviteanu*, L. Nicholson, N. F. Glasser, Evan Miles, S. Harrison, J. M. Reynolds

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)
110 Downloads (Pure)

Abstract

Glaciers respond sensitively to climate variability and change, with associated impacts on meltwater production, sea-level rise and geomorphological hazards. There is a strong societal interest in understanding the current response of all types of glacier systems to climate change and how they will continue to evolve in the context of the whole glacierized landscape. In particular, understanding the current and future behaviour of debris-covered glaciers is a ‘hot topic’ in glaciological research because of concerns for water resources and glacier-related hazards. The state of these glaciers is closely related to various hazardous geomorphological processes which are relatively poorly understood. Understanding the implications of debris-covered glacier evolution requires a systems approach. This includes the interplay of various factors such as local geomorphology, ice ablation patterns, debris characteristics and glacier lake growth and development. Such a broader, contextualized understanding is prerequisite to identifying and monitoring the geohazards and hydrologic implications associated with changes in the debris-covered glacier system under future climate scenarios. This paper presents a comprehensive review of current knowledge of the debris-covered glacier landsystem. Specifically, we review state-of-the-art field-based and the remote sensing-based methods for monitoring debris-covered glacier characteristics and lakes and their evolution under future climate change. We advocate a holistic process-based framework for assessing hazards associated with moraine-dammed glacio-terminal lakes that are a projected end-member state for many debris-covered glaciers under a warming climate.

Original languageEnglish
Article numberjgs2021-084
Number of pages21
JournalJournal of the Geological Society
Volume179
Issue number3
Early online date24 Jan 2022
DOIs
Publication statusPublished - 01 May 2022

Fingerprint

Dive into the research topics of 'Debris-covered glacier systems and associated glacial lake outburst flood hazards: Challenges and prospects'. Together they form a unique fingerprint.

Cite this