Dietary fish oil supplements depress milk fat yield and alter milk fatty acid composition in lactating cows fed grass silage-based diets

P. Kairenius, A. Ärölä , H. Leskinen, V. Toivonen, S. Ahvenjärvi, A. Vanhatalo, P. Huhtanen, T. Hurme, J. M. Griinari, Kevin Shingfield

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)
57 Downloads (Pure)

Abstract

The potential of dietary fish oil (FO) supplements to increase milk 20:5n-3 and 22:6n-3 concentrations and the associated effects on milk fatty acid (FA) composition, intake, and milk production were examined. Four multiparous lactating cows offered a grass silage-based diet (forage:concentrate ratio 58:42, on a dry matter basis) supplemented with 0, 75, 150, or 300 g of FO/d (FO0, FO75, FO150, and FO300, respectively) were used in a 4 × 4 Latin square with 28-d experimental periods. Milk FA composition was analyzed by complementary silver-ion thin-layer chromatography, gas chromatography-mass spectrometry, and silver-ion HPLC. Supplements of FO decreased linearly dry matter intake, yields of energy-corrected milk, milk fat and protein, and milk fat content. Compared with FO0, milk fat content and yield were decreased by 30.1 and 40.6%, respectively, on the FO300 treatment. Supplements of FO linearly increased milk 20:5n-3 and 22:6n-3 concentrations from 0.07 to 0.18 and 0.03 to 0.10 g/100 g of FA, respectively. Enrichment of 20:5n-3 and 22:6n-3 was accompanied by decreases in 4- to 18-carbon saturated FA and increases in total conjugated linoleic acid (CLA), trans FA, and polyunsaturated FA concentrations. Fish oil elevated milk fat cis-9,trans-11 CLA content in a quadratic manner, reaching a maximum on FO150 (from 0.61 to 2.15 g/100 g of FA), whereas further amounts of FO increased trans-10 18:1 with no change in trans-11 18:1 concentration. Supplements of FO also resulted in a dose-dependent appearance of 37 unique 20- and 22-carbon intermediates in milk fat. Concentrations of 16-, 18-, 20-, and 22-carbon trans FA were all increased by FO, with enrichment of trans 18:1 and trans 18:2 being quantitatively the most important. Decreases in milk fat yield to FO were not related to changes in milk trans-10,cis-12 CLA concentration or estimated milk fat melting point. Partial least square regression analysis indicated that FO-induced milk fat depression was associated with changes in the concentrations of multiple FA in milk. Even though a direct cause and effect could not be established, a decrease in 18:0 supply in combination with increased mammary uptake of cis-11 18:1, trans-10 18:1, and trans 20- and 22-carbon FA may contribute. In conclusion, dietary FO supplements enrich 20:5n-3 and 22:6n-3 in milk, but also elevate mono- and polyenoic trans FA concentrations, and in high amounts alter the distribution of individual trans FA isomers.
Original languageEnglish
Pages (from-to)5653-5671
JournalJournal of Dairy Science
Volume98
Issue number8
Early online date17 Jun 2015
DOIs
Publication statusPublished - Aug 2015

Keywords

  • conjugated linoleic acid
  • fish oil
  • milk fat
  • trans fatty acid

Fingerprint

Dive into the research topics of 'Dietary fish oil supplements depress milk fat yield and alter milk fatty acid composition in lactating cows fed grass silage-based diets'. Together they form a unique fingerprint.

Cite this