Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrations

P. Huybrechts, J. L. Wadham, G. Munhoven, R. Hodgkins, M. J. Sharp, I. W. Jones, A. J. Hodson, G. H. Brown, Martyn Tranter

    Research output: Contribution to journalArticlepeer-review

    54 Citations (Scopus)

    Abstract

    Chemical erosion in glacial environments is normally a consequence of chemical weathering reactions dominated by sulphide oxidation linked to carbonate dissolution and the carbonation of carbonates and silicates. Solute fluxes from small valley glaciers are usually a linear function of discharge. Representative glacial solute concentrations can be derived from the linear association of solute flux with discharge. These representative glacial concentrations of the major ions are similar to 25% of those in global river water. A 3-D thermomechanically coupled model of the growth and decay of the Northern Hemisphere ice sheets was used to simulate glacial runoff at 100-year time steps during the last glacial cycle (130 ka to the present). The glacially derived fluxes of major cations, anions and Si over the glaciation were estimated from the product of the glacial runoff and the representative glacial concentration. A second estimate was obtained from the product of the glacial runoff and a realistic upper limit for glacial solute concentrations derived from theoretical considerations. The fluxes over the last glacial cycle are usually less than a few percent of current riverine solute fluxes to the oceans. The glacial fluxes were used to provide input to an oceanic carbon cycling model that also calculates changes in atmospheric CO2. The potential change in atmospheric CO2 concentrations over the last glacial cycle that arise from perturbations in glacial solute fluxes are insignificant, being <1 ppm. (C) 2002 Elsevier Science B.V All rights reserved.
    Original languageEnglish
    Pages (from-to)33-44
    Number of pages11
    JournalChemical Geology
    Volume190
    Issue number1-4
    DOIs
    Publication statusPublished - 01 Oct 2002

    Fingerprint

    Dive into the research topics of 'Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrations'. Together they form a unique fingerprint.

    Cite this