Dual Stream Encoder: Decoder Architecture with Feature Fusion Model for Underwater Object Detection

Mehvish Nissar, Amit Kumar Mishra*, Badri Narayan Subudhi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Underwater surveillance is an imminent and fascinating exploratory domain, particularly in monitoring aquatic ecosystems. This field offers valuable insights into underwater behavior and activities, which have broad applications across various domains. Specifically, underwater surveillance involves detecting and tracking moving objects within aquatic environments. However, the complex properties of water make object detection a challenging task. Background subtraction is a commonly employed technique for detecting local changes in video scenes by segmenting images into the background and foreground to isolate the object of interest. Within this context, we propose an innovative dual-stream encoder–decoder framework based on the VGG-16 and ResNet-50 models for detecting moving objects in underwater frames. The network includes a feature fusion module that effectively extracts multiple-level features. Using a limited set of images and performing training in an end-to-end manner, the proposed framework yields accurate results without post-processing. The efficacy of the proposed technique is confirmed through visual and quantitative comparisons with eight cutting-edge methods using two standard databases. The first one employed in our experiments is the Underwater Change Detection Dataset, which includes five challenges, each challenge comprising approximately 1000 frames. The categories in this dataset were recorded under various underwater conditions. The second dataset used for practical analysis is the Fish4Knowledge dataset, where we considered five challenges. Each category, recorded in different aquatic settings, contains a varying number of frames, typically exceeding 1000 per category. Our proposed method surpasses all methods used for comparison by attaining an average F-measure of 0.98 on the Underwater Change Detection Dataset and 0.89 on the Fish4Knowledge dataset.

Original languageEnglish
Article number3227
JournalMathematics
Volume12
Issue number20
Early online date15 Oct 2024
DOIs
Publication statusPublished - Oct 2024

Keywords

  • underwater surveillance
  • object detection
  • deep learning
  • CNN
  • background subtraction
  • video surveillance
  • foreground segmentation

Fingerprint

Dive into the research topics of 'Dual Stream Encoder: Decoder Architecture with Feature Fusion Model for Underwater Object Detection'. Together they form a unique fingerprint.

Cite this