Projects per year
Abstract
For finite-dimensional quantum systems, such as qubits, a well established strategy to protect such systems from decoherence is dynamical decoupling. However many promising quantum devices, such as oscillators, are infinite dimensional, for which the question if dynamical decoupling could be applied remained open. Here we first show that not every infinite-dimensional system can be protected from decoherence through dynamical decoupling. Then we develop dynamical decoupling for continuous variable systems which are described by quadratic Hamiltonians. We identify a condition and a set of operations that allow us to map a set of interacting harmonic oscillators onto a set of non-interacting oscillators rotating with an averaged frequency, a procedure we call homogenization. Furthermore we show that every quadratic system-environment interaction can be suppressed with two simple operations acting only on the system. Using a random dynamical decoupling or homogenization scheme, we develop bounds that characterize how fast we have to work in order to achieve the desired uncoupled dynamics. This allows us to identify how well homogenization can be achieved and decoherence can be suppressed in continuous variable systems
Original language | English |
---|---|
Article number | 135303 |
Journal | Journal of Physics A: Mathematical and Theoretical |
Volume | 50 |
Issue number | 13 |
DOIs | |
Publication status | Published - 03 Mar 2017 |
Fingerprint
Dive into the research topics of 'Dynamic decoupling and homogenization of continuous variable systems'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Control characterisation of noisy quantum devices
Burgarth, D. (PI)
Engineering and Physical Sciences Research Council
01 Jun 2015 → 30 Sept 2016
Project: Externally funded research