Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in Alpine goats fed maize silage-based diets

L Bernard, M Bonnet, C Leroux, K J Shingfield, Y Chilliard

Research output: Contribution to journalArticlepeer-review

87 Citations (Scopus)

Abstract

Lipid in the diet is known to enhance milk fat secretion and alter milk fatty acid composition in lactating goats. In the current experiment, the contribution of peripheral tissue and mammary gland lipid metabolism to changes in milk fat composition from plant oils was examined. Fourteen Alpine goats in midlactation were used in a 3 x 3 Latin square design with 28-d experimental periods. Treatments comprised maize silage-based diets containing no additional oil (M), sunflower-seed oil (MSO; 6.1% of diet DM), or linseed oil (MLO; 6.2% of diet DM). Compared with the control, milk yield was greater in goats fed MSO (3.37 and 3.62 kg/d, respectively), whereas MLO enhanced milk fat content (+3.9 g/kg), resulting in a 14% increase in milk fat secretion. Both MSO and MLO increased milk lactose secretion by 12 and 8%, respectively, compared with M. Relative to the control, plant oils decreased C10 to C16 secretion (32 and 24%, respectively, for MSO and MLO) and enhanced C18 output in milk (ca. 110%). Diets MSO and MLO increased cis-9 18:1 secretion in milk by 25 and 31%, respectively, compared with M. The outputs of trans-11 18:1 and cis-9, trans-11 18:2 in milk were increased 8.34- and 6.02-fold for MSO and 5.58- and 3.71-fold for MLO compared with M, and MSO increased trans-10 18:1 and trans-10, cis-12 18:2 secretion. Plant oils decreased milk fat cis-9 14:1/14:0; cis-9 16:1/16:0; cis-9 18:1/18:0; and cis-9, trans-11 18:2/trans-11 18:1 concentration ratios but had no effect on mammary stearoyl-CoA desaturase mRNA or activity. Furthermore, changes in milk fatty acid secretion were not associated with alterations in mammary acetyl-CoA carboxylase mRNA and activity, abundance of mRNA encoding for lipoprotein lipase and fatty acid synthase, or malic enzyme and glycerol-3-phosphate dehydrogenase activity in mammary tissue. Mammary lipoprotein lipase activity was increased with MSO relative to MLO. Treatments had no effect on glucose-6-phosphate dehydrogenase, malic enzyme, glycerol-3-phosphate dehydrogenase activity, or mRNA abundance and/or activity of lipoprotein lipase, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase in liver or adipose tissue. In conclusion, inclusion of sunflower-seed oil and linseed oil in maize silage-based diets alters milk fatty acid secretion in goats via mechanisms independent of changes in mammary, hepatic, or adipose tissue lipogenic gene expression. Furthermore, data provided indications that the regulation of mammary lipogenic responses to plant oils on starch-rich diets differs between the caprine and bovine.
Original languageEnglish
Pages (from-to)6083-94
Number of pages12
JournalJournal of Dairy Science
Volume92
Issue number12
DOIs
Publication statusPublished - Dec 2009

Keywords

  • Animals
  • Diet
  • Fatty Acids
  • Female
  • Gene Expression Regulation
  • Goats
  • Linseed Oil
  • Lipid Metabolism
  • Milk
  • Plant Oils
  • Zea mays

Fingerprint

Dive into the research topics of 'Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in Alpine goats fed maize silage-based diets'. Together they form a unique fingerprint.

Cite this