TY - JOUR
T1 - Effects of parasites on fish behaviour
T2 - A review and evolutionary perspective
AU - Barber, Iain
AU - Hoare, Daniel
AU - Krause, Jens
N1 - Funding Information:
Thanks to Ken McKenzie for bringing some marine references to our attention. Much of the review was completed whilst IB was in receipt of a Royal Swedish Academy of Sciences fellowship, held at Kristineberg Marine Research Station, Sweden. IB is supported by a NERC research fellowship. DH is supported by a PhD scholarship from the University of Leeds. JK acknowledges financial support through a grant from the British Ecological Society. We are grateful to F.A. Huntingford, J-G.J. Godin, the Fish Biology Group in Glasgow and the Ecology and Evolution Group at Leeds for discussions, and to Claus Wedekind and an anonymous referee for constructive comments on the manuscript.
PY - 2000
Y1 - 2000
N2 - Fish serve as hosts to a range of parasites that are taxonomically diverse and that exhibit a wide variety of life cycle strategies. Whereas many of these parasites are passed directly between ultimate hosts, others need to navigate through a series of intermediate hosts before reaching a host in (or on) which they can attain sexual maturity. The realisation that parasites need not have evolved to minimise their impact on hosts to be successful, and in many cases may even have a requirement for their hosts to be eaten by specific predators to ensure transmission, has renewed interest in the evolutionary basis of infection-associated host behaviour. Fishes have proved popular models for the experimental examination of such hypotheses, and parasitic infections have been demonstrated to have consequences for almost every aspect of fish behaviour. Despite a scarcity of knowledge regarding the mechanistic basis of such behaviour changes in most cases, and an even lower understanding of their ecological consequences, there can be little doubt that infection-associated behaviour changes have the potential to impact severely on the ecology of infected fishes. Changes in foraging efficiency, time budget, habitat selection, competitive ability, predator-prey relationships, swimming performance and sexual behaviour and mate choice have all been associated with - and in some cases been shown to be a result of - parasite infections, and are reviewed here in some detail. Since the behavioural consequences of infections are exposed to evolutionary selection pressures in the same way as are other phenotypic traits, few behavioural changes will be evolutionarily neutral and host behaviour changes that facilitate transmission should be expected. Despite this expectation, we have found little conclusive evidence for the Parasite Increased Trophic Transmission (PITT) hypothesis in fishes, though recent studies suggest it is likely to be an important mechanism. Additionally, since the fitness consequences of the many behavioural changes described have rarely been quantified, their evolutionary and ecological significance is effectively unknown. Potential hosts may also change their behaviour in the presence of infective parasite stages, if they adopt tactics to reduce exposure risk. Such 'behavioural resistance', which may take the form of habitat avoidance, prey selectivity or avoidance of infected individuals, can be viewed as behavioural change associated with the threat of being parasitised, and so is included here. Actually harbouring infections may also stimulate fishes to perform certain types of simple or complex behaviours aimed at removing parasites, such as substrate scraping or the visitation of cleaning stations, although the efficacy of the latter as a parasite removal strategy is currently subject to a good deal of debate. The effects parasites have on shoaling behaviour of host fish have attracted a good deal of attention from researchers, and we have provided a case study to summarise the current state of knowledge. Parasites have been shown to affect most of the antipredator effects of shoaling (such as vigilance, co-ordinated evasion and predator confusion) and can also impair an individual's foraging ability. It therefore seems unsurprising that, in a number of species avoidance of parasitised individuals has evolved which may explain the occurrence of parasite-assorted shoals in the field. Parasitised fish are found more often in peripheral shoal positions and show a reduced tendency for shoaling in some fish species. Given the array of host behaviours that may be changed, the fitness consequences of shoal membership for parasitised hosts and their parasites are not always easy to predict, yet an understanding of these is important before we can make predictions regarding the ecological impact of infections on host fish populations. Clearly, there remain many gaps in our knowledge regarding the effects of parasites on the behaviour of host fish. We believe that a much greater understanding of the importance of infection-associated behaviour changes in fish could be gained from high quality research in comparatively few areas. We have completed our review by highlighting the key research topics that we believe should attract new research in this field.
AB - Fish serve as hosts to a range of parasites that are taxonomically diverse and that exhibit a wide variety of life cycle strategies. Whereas many of these parasites are passed directly between ultimate hosts, others need to navigate through a series of intermediate hosts before reaching a host in (or on) which they can attain sexual maturity. The realisation that parasites need not have evolved to minimise their impact on hosts to be successful, and in many cases may even have a requirement for their hosts to be eaten by specific predators to ensure transmission, has renewed interest in the evolutionary basis of infection-associated host behaviour. Fishes have proved popular models for the experimental examination of such hypotheses, and parasitic infections have been demonstrated to have consequences for almost every aspect of fish behaviour. Despite a scarcity of knowledge regarding the mechanistic basis of such behaviour changes in most cases, and an even lower understanding of their ecological consequences, there can be little doubt that infection-associated behaviour changes have the potential to impact severely on the ecology of infected fishes. Changes in foraging efficiency, time budget, habitat selection, competitive ability, predator-prey relationships, swimming performance and sexual behaviour and mate choice have all been associated with - and in some cases been shown to be a result of - parasite infections, and are reviewed here in some detail. Since the behavioural consequences of infections are exposed to evolutionary selection pressures in the same way as are other phenotypic traits, few behavioural changes will be evolutionarily neutral and host behaviour changes that facilitate transmission should be expected. Despite this expectation, we have found little conclusive evidence for the Parasite Increased Trophic Transmission (PITT) hypothesis in fishes, though recent studies suggest it is likely to be an important mechanism. Additionally, since the fitness consequences of the many behavioural changes described have rarely been quantified, their evolutionary and ecological significance is effectively unknown. Potential hosts may also change their behaviour in the presence of infective parasite stages, if they adopt tactics to reduce exposure risk. Such 'behavioural resistance', which may take the form of habitat avoidance, prey selectivity or avoidance of infected individuals, can be viewed as behavioural change associated with the threat of being parasitised, and so is included here. Actually harbouring infections may also stimulate fishes to perform certain types of simple or complex behaviours aimed at removing parasites, such as substrate scraping or the visitation of cleaning stations, although the efficacy of the latter as a parasite removal strategy is currently subject to a good deal of debate. The effects parasites have on shoaling behaviour of host fish have attracted a good deal of attention from researchers, and we have provided a case study to summarise the current state of knowledge. Parasites have been shown to affect most of the antipredator effects of shoaling (such as vigilance, co-ordinated evasion and predator confusion) and can also impair an individual's foraging ability. It therefore seems unsurprising that, in a number of species avoidance of parasitised individuals has evolved which may explain the occurrence of parasite-assorted shoals in the field. Parasitised fish are found more often in peripheral shoal positions and show a reduced tendency for shoaling in some fish species. Given the array of host behaviours that may be changed, the fitness consequences of shoal membership for parasitised hosts and their parasites are not always easy to predict, yet an understanding of these is important before we can make predictions regarding the ecological impact of infections on host fish populations. Clearly, there remain many gaps in our knowledge regarding the effects of parasites on the behaviour of host fish. We believe that a much greater understanding of the importance of infection-associated behaviour changes in fish could be gained from high quality research in comparatively few areas. We have completed our review by highlighting the key research topics that we believe should attract new research in this field.
KW - Competition
KW - Ecology
KW - Foraging
KW - Host-parasite relationships
KW - Life cycles
KW - Manipulation hypothesis
KW - PITT
KW - Predation
KW - Schooling
KW - Sexual selection
KW - Shoaling
UR - http://www.scopus.com/inward/record.url?scp=0034442567&partnerID=8YFLogxK
U2 - 10.1023/A:1016658224470
DO - 10.1023/A:1016658224470
M3 - Article
AN - SCOPUS:0034442567
SN - 0960-3166
VL - 10
SP - 131
EP - 165
JO - Reviews in Fish Biology and Fisheries
JF - Reviews in Fish Biology and Fisheries
IS - 2
ER -